Low Noise Amplifiers (LNAs) are commonly used to amplify signals that are too weak for direct processing for example in radio or cable receivers. Traditionally, low noise amplifiers are implemented via tuned amplifiers, exploiting inductors and capacitors in resonating LC-circuits. This can render very low noise but only in a relatively narrow frequency band close to resonance. There is a clear trend to use more bandwidth for communication, both via cables (e.g. cable TV, internet) and wireless links (e.g. satellite links and Ultra Wideband Band). Hence wideband low-noise amplifier techniques are very much needed. Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation explores techniques to realize wideband amplifiers, capable of impedance matching and still achieving a low noise figure well below 3dB. This can be achieved with a new noise cancelling technique as described in this book. By using this technique, the thermal noise of the input transistor of the LNA can be cancelled while the wanted signal is amplified! The book gives a detailed analysis of this technique and presents several new amplifier circuits. This book is directly relevant for IC designers and researchers working on integrated transceivers. Although the focus is on CMOS circuits, the techniques can just as well be applied to other IC technologies, e.g. bipolar and GaAs, and even in discrete component technologies.
High-speed Photodiodes in Standard CMOS Technology describes high-speed photodiodes in standard CMOS technology which allow monolithic integration of optical receivers for short-haul communication. For short haul communication the cost aspect is important , and therefore it is desirable that the optical receiver can be integrated in the same CMOS technology as the rest of the system. If this is possible then ultimately a singe-chip system including optical inputs becomes feasible, eliminating EMC and crosstalk problems, while data rate can be extremely high. The problem of photodiodes in standard CMOS technology it that they have very limited bandwidth, allowing data rates up to only 50Mbit per second. High-speed Photodiodes in Standard CMOS Technology first analyzes the photodiode behaviour and compares existing solutions to enhance the speed. After this, the book introduces a new and robust electronic equalizer technique that makes data rates of 3Gb/s possible, without changing the manufacturing technology. The application of this technique can be found in short haul fibre communication, optical printed circuit boards, but also photodiodes for laser disks.
Integrated circuit technology is widely used for the full integration of electronic systems. In general, these systems are realized using digital techniques implemented in CMOS technology. The low power dissipation, high packing density, high noise immunity, ease of design and the relative ease of scaling are the driving forces of CMOS technology for digital applications. Parts of these systems cannot be implemented in the digital domain and will remain analog. In order to achieve complete system integration these analog functions are preferably integrated in the same CMOS technology. An important class of analog circuits that need to be integrated in CMOS are analog filters. This book deals with very high frequency (VHF) filters, which are filters with cut-off frequencies ranging from the low megahertz range to several hundreds of megahertz. Until recently the maximal cut-off frequencies of CMOS filters were limited to the low megahertz range. By applying the techniques presented in this book the limit could be pushed into the true VHF domain, and integrated VHF filters become feasible. Application of these VHF filters can be found in the field of communication, instrumentation and control systems. For example, pre and post filtering for high-speed AD and DA converters, signal reconstruction, signal decoding, etc. The general design philosophy used in this book is to allow only the absolute minimum of signal carrying nodes throughout the whole filter. This strategy starts at the filter synthesis level and is extended to the level of electronic circuitry. The result is a filter realization in which all capacitators (including parasitics) have a desired function. The advantage of this technique is that high frequency parasitic effects (parasitic poles/zeros) are minimally present. The book is a reference for engineers in research or development, and is suitable for use as a text for advanced courses on the subject. >
This book analyses different A/D-converter architectures with an emphasis on the maximum achievable power efficiency. It also provides an accessible overview of the state-of-the art in calibration techniques for Nyquist A/D converters. The calibration techniques presented are applicable to other analog-to-digital systems, such as those applied in integrated receivers. They allow implementation without introducing a speed or power penalty.
Time-interleaved Analog-to-Digital Converters describes the research performed on low-power time-interleaved ADCs. A detailed theoretical analysis is made of the time-interleaved Track & Hold, since it must be capable of handling signals in the GHz range with little distortion, and minimal power consumption. Timing calibration is not attractive, therefore design techniques are presented which do not require timing calibration. The design of power efficient sub-ADCs is addressed with a theoretical analysis of a successive approximation converter and a pipeline converter. It turns out that the first can consume about 10 times less power than the latter, and this conclusion is supported by literature. Time-interleaved Analog-to-Digital Converters describes the design of a high performance time-interleaved ADC, with much attention for practical design aspects, aiming at both industry and research. Measurements show best-inclass performance with a sample-rate of 1.8 GS/s, 7.9 ENOBs and a power efficiency of 1 pJ/conversion-step.
This book is the first to explore the rich festival culture of late sixteenth- and early seventeenth-century France as a tool for diplomacy. Bram van Leuveren examines how the late Valois and early Bourbon rulers of the kingdom made conscious use of festivals to advance their diplomatic interests in a war-torn Europe and how diplomatic stakeholders from across the continent participated in and responded to the theatrical and ceremonial events that featured at these festivals. Analysing a large body of multilingual eyewitness and commemorative accounts, as well as visual and material objects, Van Leuveren argues that French festival culture operated as a contested site where the diplomatic concerns of stakeholders from various national, religious, and social backgrounds fought for recognition.
CMOS Fractional-N Synthesizers starts with a comprehensive introduction to general frequency synthesis. Different architectures and synthesizer building blocks are discussed with their relative importance on synthesizer specifications. The process of synthesizer specification derivation is illustrated with the DCS-1800 standard as a general test case. The book tackles the design of fractional-N synthesizers in CMOS on circuit level as well as system level. The circuit level focuses on high-speed prescaler design up to 12 GHz in CMOS and on fully integrated, low-phase-noise LC-VCO design. High-Q inductor integration and simulation in CMOS is elaborated and flicker noise minimization techniques are presented, ranging from bias point choice to noise filtering techniques. On a higher level, a systematic design strategy has been developed that trades off all noise contributions and fast dynamics for integrated capacitance (area). Moreover, a theoretical DeltaSigma phase noise analysis is presented, extended with a fast non-linear analysis method to accurately predict the influence of PLL non-linearities on the spectral purity of the DeltaSigma fractional-N frequency synthesizers.
Low Noise Amplifiers (LNAs) are commonly used to amplify signals that are too weak for direct processing for example in radio or cable receivers. Traditionally, low noise amplifiers are implemented via tuned amplifiers, exploiting inductors and capacitors in resonating LC-circuits. This can render very low noise but only in a relatively narrow frequency band close to resonance. There is a clear trend to use more bandwidth for communication, both via cables (e.g. cable TV, internet) and wireless links (e.g. satellite links and Ultra Wideband Band). Hence wideband low-noise amplifier techniques are very much needed. Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation explores techniques to realize wideband amplifiers, capable of impedance matching and still achieving a low noise figure well below 3dB. This can be achieved with a new noise cancelling technique as described in this book. By using this technique, the thermal noise of the input transistor of the LNA can be cancelled while the wanted signal is amplified! The book gives a detailed analysis of this technique and presents several new amplifier circuits. This book is directly relevant for IC designers and researchers working on integrated transceivers. Although the focus is on CMOS circuits, the techniques can just as well be applied to other IC technologies, e.g. bipolar and GaAs, and even in discrete component technologies.
Integrated circuit technology is widely used for the full integration of electronic systems. In general, these systems are realized using digital techniques implemented in CMOS technology. The low power dissipation, high packing density, high noise immunity, ease of design and the relative ease of scaling are the driving forces of CMOS technology for digital applications. Parts of these systems cannot be implemented in the digital domain and will remain analog. In order to achieve complete system integration these analog functions are preferably integrated in the same CMOS technology. An important class of analog circuits that need to be integrated in CMOS are analog filters. This book deals with very high frequency (VHF) filters, which are filters with cut-off frequencies ranging from the low megahertz range to several hundreds of megahertz. Until recently the maximal cut-off frequencies of CMOS filters were limited to the low megahertz range. By applying the techniques presented in this book the limit could be pushed into the true VHF domain, and integrated VHF filters become feasible. Application of these VHF filters can be found in the field of communication, instrumentation and control systems. For example, pre and post filtering for high-speed AD and DA converters, signal reconstruction, signal decoding, etc. The general design philosophy used in this book is to allow only the absolute minimum of signal carrying nodes throughout the whole filter. This strategy starts at the filter synthesis level and is extended to the level of electronic circuitry. The result is a filter realization in which all capacitators (including parasitics) have a desired function. The advantage of this technique is that high frequency parasitic effects (parasitic poles/zeros) are minimally present. The book is a reference for engineers in research or development, and is suitable for use as a text for advanced courses on the subject. >
This book analyses different A/D-converter architectures with an emphasis on the maximum achievable power efficiency. It also provides an accessible overview of the state-of-the art in calibration techniques for Nyquist A/D converters. The calibration techniques presented are applicable to other analog-to-digital systems, such as those applied in integrated receivers. They allow implementation without introducing a speed or power penalty.
Time-interleaved Analog-to-Digital Converters describes the research performed on low-power time-interleaved ADCs. A detailed theoretical analysis is made of the time-interleaved Track & Hold, since it must be capable of handling signals in the GHz range with little distortion, and minimal power consumption. Timing calibration is not attractive, therefore design techniques are presented which do not require timing calibration. The design of power efficient sub-ADCs is addressed with a theoretical analysis of a successive approximation converter and a pipeline converter. It turns out that the first can consume about 10 times less power than the latter, and this conclusion is supported by literature. Time-interleaved Analog-to-Digital Converters describes the design of a high performance time-interleaved ADC, with much attention for practical design aspects, aiming at both industry and research. Measurements show best-inclass performance with a sample-rate of 1.8 GS/s, 7.9 ENOBs and a power efficiency of 1 pJ/conversion-step.
High-speed Photodiodes in Standard CMOS Technology describes high-speed photodiodes in standard CMOS technology which allow monolithic integration of optical receivers for short-haul communication. For short haul communication the cost aspect is important , and therefore it is desirable that the optical receiver can be integrated in the same CMOS technology as the rest of the system. If this is possible then ultimately a singe-chip system including optical inputs becomes feasible, eliminating EMC and crosstalk problems, while data rate can be extremely high. The problem of photodiodes in standard CMOS technology it that they have very limited bandwidth, allowing data rates up to only 50Mbit per second. High-speed Photodiodes in Standard CMOS Technology first analyzes the photodiode behaviour and compares existing solutions to enhance the speed. After this, the book introduces a new and robust electronic equalizer technique that makes data rates of 3Gb/s possible, without changing the manufacturing technology. The application of this technique can be found in short haul fibre communication, optical printed circuit boards, but also photodiodes for laser disks.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.