Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the worlds oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume the authors, all of whom have extensive at-sea experience in US and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.
As nanotechnology has developed over the last two decades, some nanostructures, such as nanotubes, nanowires, and nanoparticles, have become very popular. However, recent research has led to the discovery of other, less-common nanoforms, which often serve as building blocks for more complex structures. In an effort to organize the field, the Handbook of Less-Common Nanostructures presents an informal classification based mainly on the less-common nanostructures. A small nanotechnological encyclopedia, this book: Describes a range of little-known nanostructures Offers a unifying vision of the synthesis of nanostructures and the generalization of rare nanoforms Includes downloadable resources with color versions of more than 100 nanostructures Explores the fabrication of rare nanostructures, including modern physical, chemical, and biological synthesis techniques The Handbook of Less-Common Nanostructures discusses a classification system not directly related to the dimensionality and chemical composition of nanostructure-forming compounds or composite. Instead, it is based mainly on the less-common nanostructures. Possessing unusual shapes and high surface areas, these structures are potentially very useful for catalytic, medical, electronic, and many other applications.
The objective of this book is to present the main theoretical approaches and models in shallow water acoustics as well as different experimental results. The focus is primarily concentrated on physical results describing the sound field in wave length. The authors show dynamic phenomena (tides, internal waves) from the perspective of acoustic influence as well as the scattering of sound over the macroscopic body in shallow water waveguide. The method of acoustic probing can be used by physicists, geophysicists, geologists and oceanographers.
This is the true story behind General Alexander Orlov, the man who never was, now revealed in full for the first time: Stalinist henchman, Soviet spy, celebrated defector to the West, and central character in the greatest KGB deception ever.
This book provides a detailed description of metal-complex functionalized carbon allotrope forms, including classic (such as graphite), rare (such as M- or T-carbon), and nanoforms (such as carbon nanotubes, nanodiamonds, etc.). Filling a void in the nanotechnology literature, the book presents chapters generalizing the synthesis, structure, properties, and applications of all known carbon allotropes. Metal-complex composites of carbons are described, along with several examples of their preparation and characterization, soluble metal-complex carbon composites, cost-benefit data, metal complexes as precursors of carbon allotropes, and applications. A lab manual on the synthesis and characterization of carbon allotropes and their metal-complex composites is included. Provides a complete description of all carbon allotropes, both classic and rare, as well as carbon nanostructures and their metal-complex composites; Contains a laboratory manual of experiments on the synthesis and characterization of metal-complex carbon composites; Discusses applications in diverse fields, such as catalysis on supporting materials, water treatment, sensors, drug delivery, and devices.
Ancient Irrigation Systems in the Aral Sea Area, is the English translation of Boris Vasilevich Andrianov's work, Drevnie orositelnye sistemy priaralya , concerning the study of ancient irrigation systems and the settlement pattern in the historical region of Khorezm, south of the Aral Sea (Uzbekistan). This work holds a special place within the Soviet archaeological school because of the results obtained through a multidisciplinary approach combining aerial survey and fieldwork, surveys, and excavations. This translation has been enriched by the addition of introductions written by several eminent scholars from the region regarding the importance of the Khorezm Archaeological-Ethnographic Expedition and the figure of Boris V. Andrianov and his landmark study almost 50 years after the original publication.
Unified Non-Local Relativistic Theory of Transport Processes highlights the most significant features of non-local relativistic theory, which is a highly effective tool for solving many physical problems in areas where the classical local theory runs into difficulties. The book provides the fundamental science behind new non-local physics – generalized for relativistic cases and applied in a range of scales – from transport phenomena in massless physical systems to unified theory of dissipative structures. The book complements the author's previous monograph on Unified Non-Local Theory of Transport Processes (Elsevier, 2015), which is mainly devoted to non-relativistic non-local physics. Nevertheless, the theory as handled in this new work is outlined independently so the book can be studied on its own. - Comprehensive collection of non-local relativistic theory with examples that could previously only be found scattered in the literature - Provides applications in quantum non-local relativistic hydrodynamics, quantum solitons in solid matter, and plasmas - Uses generalized non-local kinetic theory as a highly effective tool for solving many physical problems beyond classical physics - Presents non-local relativistic physics in many related problems of hydrodynamics, gravity, nonlinear optics, time quantization, and applied mathematics - Includes concrete mathematical problems that are physically consistent and can be solved and studied both analytically and numerically
This book presents a theoretical framework for magnetism in ferromagnetic metals and alloys at finite temperatures. The objective of the book is twofold. First, it gives a detailed presentation of the dynamic spin-fluctuation theory that takes into account both local and long-wave spin fluctuations with any frequency. The authors provide a detailed explanation of the fundamental role of quantum spin fluctuations in the mechanism of metallic magnetism and illustrate the theory with concrete examples. The second objective of the book is to give an accurate and self-contained presentation of many-body techniques such as the functional integral method and Green's functions, via a number of worked examples. These computational methods are of great use to solid state physicists working in a range of specialties. The book is intended primarily for researchers, but can also be used as textbook. The introductory chapters offer clear and complete derivations of the fundamentals, which makes the presentation self-contained. The main text is followed by a number of well-organized appendices that contain a detailed presentation of the necessary many-body techniques and computational methods. The book also includes a list of symbols and detailed index. This volume will be of interest to a wide range of physicists interested in magnetism and solid state physics in general, both theoreticians and experimentalists.
The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green’s and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations
The book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of new important problems in index theory. So far, the localization principle has been only scarcely covered in journal papers and not covered at all in monographs. The suggested book is intended to fill the gap. So far, it is the first and only monograph dealing with the topic. Both the general localization principle and its applications to specific problems, existing and new, are covered. The book will be of interest to working mathematicians as well as graduate and postgraduate university students specializing in differential equations and related topics.
Modern Crystallography provides an encyclopedic exposition of the field in four volumes written by Russian scientists. Structures of Crystals considers the ideal and real atomic structure of crystals as well as their electronic structures, the fundamentals of chemical bonding between atoms, geometric representations in the theory of crystal structure and crystal chemistry, as well as lattice energy. The important classes of crystal structures in inorganic compounds as well as structure polymers, liquid crystals, biological crystals, and macromolecules are treated. This second edition is complemented by recent data on many types of crystal structures - fullerenes, high-temperature superconductors, minerals, liquid crystals, etc.
The four-volume treatment Modern Crystallography presents an encyclopaedic exposition of problems concerning the structure of crystals, their growth and their properties. Structure of Crystals deals with crystal structures in inorganic and organic compounds, polymers, liquid crystals, biological crystals and macromolecules.
Modern Crystallography provides an encyclopedic exposition of the field in four volumes written by Russian scientists. Structures of Crystals considers the ideal and real atomic structure of crystals as well as their electronic structures, the fundamentals of chemical bonding between atoms, geometric representations in the theory of crystal structure and crystal chemistry, as well as lattice energy. The important classes of crystal structures in inorganic compounds as well as structure polymers, liquid crystals, biological crystals, and macromolecules are treated. This second edition is complemented by recent data on many types of crystal structures - fullerenes, high-temperature superconductors, minerals, liquid crystals, etc.
Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the worlds oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume the authors, all of whom have extensive at-sea experience in US and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.
The objective of this book is to present the main theoretical approaches and models in shallow water acoustics as well as different experimental results. The focus is primarily concentrated on physical results describing the sound field in wave length. The authors show dynamic phenomena (tides, internal waves) from the perspective of acoustic influence as well as the scattering of sound over the macroscopic body in shallow water waveguide. The method of acoustic probing can be used by physicists, geophysicists, geologists and oceanographers.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.