This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for the construction of optimum designs using Hadamard matrices, the Kronecker product, Rao-Khatri product, mixed orthogonal arrays to name a few.
The study of social networks is a new but fast widening multidisciplinary area involving social, mathematical, statistical and computer sciences for application in diverse social environments; in the latter sciences, and specially for the field of Economics. It has its own parameters and methodological tools. In 'Models for Social Networks with Statistical Applications', the authors show how graph-theoretic and statistical techniques can be used to study some important parameters of global social networks and illustrate their use in social science studies with some examples in real life survey data.
This book covers a wide range of topics in both discrete and continuous optimal designs. The topics discussed include designs for regression models, covariates models, models with trend effects, and models with competition effects. The prerequisites are a basic course in the design and analysis of experiments and some familiarity with the concepts of optimality criteria.
This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method – as distinct from a ‘science’ related to any one type of phenomena – is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.
There has been an enormous growth in recent years in the literature on discrete optimal designs. The optimality problems have been formulated in various models arising in the experimental designs and substantial progress has been made towards solving some of these. The subject has now reached a stage of completeness which calls for a self-contained monograph on this topic. The aim of this monograph is to present the state of the art and to focus on more recent advances in this rapidly developing area. We start with a discussion of statistical optimality criteria in Chapter One. Chapters Two and Three deal with optimal block designs. Row-column designs are dealt with in Chapter Four. In Chapter Five we deal with optimal designs with mixed effects models. Repeated measurement designs are considered in Chapter Six. Chapter Seven deals with some special situations and Weighing designs are dis cussed in Chapter Eight. We have endeavoured to include all the major developments that have taken place in the last three decades. The book should be of use to research workers in several areas including combinatorics as well as to the experimenters in diverse fields of applications. Since the details of the construction of the designs are available in excellent books, we have only pointed out the designs which have optimality proper ties. We believe, this will be adequate for the experimenters.
This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method – as distinct from a ‘science’ related to any one type of phenomena – is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.
This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for the construction of optimum designs using Hadamard matrices, the Kronecker product, Rao-Khatri product, mixed orthogonal arrays to name a few.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.