Since the early seventies concepts of specification have become central in the whole area of computer science. Especially algebraic specification techniques for abstract data types and software systems have gained considerable importance in recent years. They have not only played a central role in the theory of data type specification, but meanwhile have had a remarkable influence on programming language design, system architectures, arid software tools and environments. The fundamentals of algebraic specification lay a basis for teaching, research, and development in all those fields of computer science where algebraic techniques are the subject or are used with advantage on a conceptual level. Such a basis, however, we do not regard to be a synopsis of all the different approaches and achievements but rather a consistently developed theory. Such a theory should mainly emphasize elaboration of basic concepts from one point of view and, in a rigorous way, reach the state of the art in the field. We understand fundamentals in this context as: 1. Fundamentals in the sense of a carefully motivated introduction to algebraic specification, which is understandable for computer scientists and mathematicians. 2. Fundamentals in the sense of mathematical theories which are the basis for precise definitions, constructions, results, and correctness proofs. 3. Fundamentals in the sense of concepts from computer science, which are introduced on a conceptual level and formalized in mathematical terms.
The aim of this book is to present fundamentals of algebraic specifications with respect to the following three aspects: fundamentals in the sense of a carefully motivated introduction to algebraic specifications, which is easy to understand for computer scientists and mathematicians; fundamentals in the sense of mathematical theories which are the basis for precise definitions, constructions, results, and correctness proofs; and fundamentals in the sense of concepts, which are introduced on a conceptual level and formalized in mathematical terms. The book is equally suitableas a text book for graduate courses and as a reference for researchers and system developers.
Arabic texts dating from the 3rd-4th/9th-10th centuries by the following five authors are here presented: Ab? Shaykh al-Burjul?n?, Ibr?h?m al-Khuttal?, Ibn al-Na???s, Ab? ?Abd All?h al-R?dhab?r? and Ibn ?amak?n. The texts appear in transliteration along with a German translation. Their chains of transmission (isn?ds) are analyzed and parallels with other authors are noted. The subject dealt with throughout is mystical piety. These highly interesting materials throw light on Islamic mysticism's early stage of development.
Software programs are formal entities with precise meanings independent of their programmers, so the transition from ideas to programs necessarily involves a formalisation at some point. The first part of this graduate-level introduction to formal methods develops an understanding of what constitutes formal methods and what their place is in Software Engineering. It also introduces logics as languages to describe reasoning and the process algebra CSP as a language to represent behaviours. The second part offers specification and testing methods for formal development of software, based on the modelling languages CASL and UML. The third part takes the reader into the application domains of normative documents, human machine interfaces, and security. Use of notations and formalisms is uniform throughout the book. Topics and features: Explains foundations, and introduces specification, verification, and testing methods Explores various application domains Presents realistic and practical examples, illustrating concepts Brings together contributions from highly experienced educators and researchers Offers modelling and analysis methods for formal development of software Suitable for graduate and undergraduate courses in software engineering, this uniquely practical textbook will also be of value to students in informatics, as well as to scientists and practical engineers, who want to learn about or work more effectively with formal theories and methods. Markus Roggenbach is a Professor in the Dept. of Computer Science of Swansea University. Antonio Cerone is an Associate Professor in the Dept. of Computer Science of Nazarbayev University, Nur-Sultan. Bernd-Holger Schlingloff is a Professor in the Institut für Informatik of Humboldt-Universität zu Berlin. Gerardo Schneider is a Professor in the Dept. of Computer Science and Engineering of University of Gothenburg. Siraj Ahmed Shaikh is a Professor in the Institute for Future Transport and Cities of Coventry University. The companion site for the book offers additional resources, including further material for selected chapters, prepared lab classes, a list of errata, slides and teaching material, and virtual machines with preinstalled tools and resources for hands-on experience with examples from the book. The URL is: https://sefm-book.github.io
This book describes the design of a low complexity, fault-detecting computer architecture for utilisation in programmable logic controllers (PLCs) for process control purposes. The cyclic operating mode of PLCs and a specification level graphical programming paradigm based on interconnecting application-oriented standard software function modules are architecturally supported. Thus, by design, there is no semantic gap between the specification, programming and machine execution levels enabling the safety licensing of application software by diverse back translation, an extremely simple but rigorous method.
Heinrich involves us in his quest to get inside the mind of the raven. But as animals can only be spied on by getting quite close, Heinrich adopts ravens, thereby becoming a "raven father," as well as observing them in their natural habitat. He studies their daily routines, and in the process, paints a vivid picture of the ravens' world. At the heart of this book are Heinrich's love and respect for these complex and engaging creatures, and through his keen observation and analysis, we become their intimates too. Heinrich's passion for ravens has led him around the world in his research. Mind of the Raven follows an exotic journey—from New England to Germany, and from Montana to Baffin Island in the high Arctic—offering dazzling accounts of how science works in the field, filtered through the eyes of a passionate observer of nature. Each new discovery and insight into raven behavior is thrilling to read, at once lyrical and scientific.
Since the early seventies concepts of specification have become central in the whole area of computer science. Especially algebraic specification techniques for abstract data types and software systems have gained considerable importance in recent years. They have not only played a central role in the theory of data type specification, but meanwhile have had a remarkable influence on programming language design, system architectures, arid software tools and environments. The fundamentals of algebraic specification lay a basis for teaching, research, and development in all those fields of computer science where algebraic techniques are the subject or are used with advantage on a conceptual level. Such a basis, however, we do not regard to be a synopsis of all the different approaches and achievements but rather a consistently developed theory. Such a theory should mainly emphasize elaboration of basic concepts from one point of view and, in a rigorous way, reach the state of the art in the field. We understand fundamentals in this context as: 1. Fundamentals in the sense of a carefully motivated introduction to algebraic specification, which is understandable for computer scientists and mathematicians. 2. Fundamentals in the sense of mathematical theories which are the basis for precise definitions, constructions, results, and correctness proofs. 3. Fundamentals in the sense of concepts from computer science, which are introduced on a conceptual level and formalized in mathematical terms.
The aim of this book is to present fundamentals of algebraic specifications with respect to the following three aspects: fundamentals in the sense of a carefully motivated introduction to algebraic specifications, which is easy to understand for computer scientists and mathematicians; fundamentals in the sense of mathematical theories which are the basis for precise definitions, constructions, results, and correctness proofs; and fundamentals in the sense of concepts, which are introduced on a conceptual level and formalized in mathematical terms. The book is equally suitableas a text book for graduate courses and as a reference for researchers and system developers.
Since the early seventies concepts of specification have become central in the whole area of computer science. Especially algebraic specification techniques for abstract data types and software systems have gained considerable importance in recent years. They have not only played a central role in the theory of data type specification, but meanwhile have had a remarkable influence on programming language design, system architectures, arid software tools and environments. The fundamentals of algebraic specification lay a basis for teaching, research, and development in all those fields of computer science where algebraic techniques are the subject or are used with advantage on a conceptual level. Such a basis, however, we do not regard to be a synopsis of all the different approaches and achievements but rather a consistently developed theory. Such a theory should mainly emphasize elaboration of basic concepts from one point of view and, in a rigorous way, reach the state of the art in the field. We understand fundamentals in this context as: 1. Fundamentals in the sense of a carefully motivated introduction to algebraic specification, which is understandable for computer scientists and mathematicians. 2. Fundamentals in the sense of mathematical theories which are the basis for precise definitions, constructions, results, and correctness proofs. 3. Fundamentals in the sense of concepts from computer science, which are introduced on a conceptual level and formalized in mathematical terms.
The aim of this book is to present fundamentals of algebraic specifications with respect to the following three aspects: fundamentals in the sense of a carefully motivated introduction to algebraic specifications, which is easy to understand for computer scientists and mathematicians; fundamentals in the sense of mathematical theories which are the basis for precise definitions, constructions, results, and correctness proofs; and fundamentals in the sense of concepts, which are introduced on a conceptual level and formalized in mathematical terms. The book is equally suitableas a text book for graduate courses and as a reference for researchers and system developers.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.