Since the 90s, the Li-ion batteries are the most commonly used energy storage systems. The demand for performance and safety is constantly growing, current commercial batteries based liquid electrolytes or gels may not be able to meet the needs of emerging applications such as for electric and hybrid vehicles and renewable energy storage , and it is therefore necessary to develop advanced storage systems with characteristics such that the highest density of energy technology, long life, low cost of production, little or no maintenance and high safety of use. Batteries "all solid" are a technology of choice to meet these requirements. In this technology, the electrolyte separator between the two electrodes is no longer a liquid medium but a solid.
Climate change and the loss of biodiversity are now realities. Their causes and origins stem from the energy, goods and resources relied upon by the lifestyle of a growing part of humanity. Smart Users for Energy and Societal Transition presents this much needed transition, as well as the scenarios and paths essential to mitigating the impacts of climate change. It deals with transitions experimented in the form of ecosystems in universities, cities and territories, as well as with concepts of smart buildings, smart grids and smart cities, addressed to smart users – or not – in an interdisciplinary research context. Sociological issues related to the role of smart building users are discussed, ranging from acceptance to the appropriation of the technologies made available to them. The book highlights the ethics of this essential transition and the importance of individual behaviors in safeguarding humanity on a preserved planet.
This book presents interdisciplinary approaches to help buildings, electrical energy networks and their users contribute to the energy and societal transition. Smart Grids and Buildings for Energy and Societal Transition examines the technologies, uses and imaginaries involved in implementing smart buildings and smart grids. Production and consumption forecasts, modeling of stakeholder involvement and self-consumption within a renewable energy community exploiting blockchain technology are examples developed with a view to fostering the emergence of smart grids. The potential of smart buildings, taking into account user comfort while increasing energy efficiency, is identified. Full-scale demonstrators are used to test the proposed solutions, and to ensure that users take full advantage of the potential for electrical flexibility.
Energy autonomy is an emerging concept that is, as yet, poorly identified in France. It can mean taking ownership of certain issues related to energy, its production, or, indeed, becoming self-sufficient, and it can apply equally to individuals, communities and buildings. While there are numerous new developments – renewable energies, smart grids and self-consumption – it is becoming difficult to know what this idea of “autonomy” covers, just as it is difficult to define “independence” and “self-sufficiency”, which are often associated with it. However, these three concepts are key to thinking about the energy system and deciding its future. Covering distinct ideas, they are often reduced to economic and productive factors. This ambiguity in their meanings is responsible for the misunderstandings, delusions and obstacles that hamper the implementation of the energy transition. This book deconstructs the common idea of autonomy in favor of a set of more operational concepts. It demonstrates that these ideas are not interchangeable but rather represent practical and constructive tools for action. The world of energy is changing, and therefore we must rethink energy autonomy.
Since the 90s, the Li-ion batteries are the most commonly used energy storage systems. The demand for performance and safety is constantly growing, current commercial batteries based liquid electrolytes or gels may not be able to meet the needs of emerging applications such as for electric and hybrid vehicles and renewable energy storage , and it is therefore necessary to develop advanced storage systems with characteristics such that the highest density of energy technology, long life, low cost of production, little or no maintenance and high safety of use. Batteries "all solid" are a technology of choice to meet these requirements. In this technology, the electrolyte separator between the two electrodes is no longer a liquid medium but a solid.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.