At almost all academic institutions worldwide, complex variables and analytic functions are utilized in courses on applied mathematics, physics, engineering, and other related subjects. For most students, formulas alone do not provide a sufficient introduction to this widely taught material, yet illustrations of functions are sparse in current books on the topic. This is the first primary introductory textbook on complex variables and analytic functions to make extensive use of functional illustrations. Aiming to reach undergraduate students entering the world of complex variables and analytic functions, this book utilizes graphics to visually build on familiar cases and illustrate how these same functions extend beyond the real axis. It covers several important topics that are omitted in nearly all recent texts, including techniques for analytic continuation and discussions of elliptic functions and of WienerHopf methods. It also presents current advances in research, highlighting the subjects active and fascinating frontier. The primary audience for this textbook is undergraduate students taking an introductory course on complex variables and analytic functions. It is also geared toward graduate students taking a second semester course on these topics, engineers and physicists who use complex variables in their work, and students and researchers at any level who want a reference book on the subject.
Adapted from a series of lectures given by the authors, this monograph focuses on radial basis functions (RBFs), a powerful numerical methodology for solving PDEs to high accuracy in any number of dimensions. This method applies to problems across a wide range of PDEs arising in fluid mechanics, wave motions, astro- and geosciences, mathematical biology, and other areas and has lately been shown to compete successfully against the very best previous approaches on some large benchmark problems. Using examples and heuristic explanations to create a practical and intuitive perspective, the authors address how, when, and why RBF-based methods work. The authors trace the algorithmic evolution of RBFs, starting with brief introductions to finite difference (FD) and pseudospectral (PS) methods and following a logical progression to global RBFs and then to RBF-generated FD (RBF-FD) methods. The RBF-FD method, conceived in 2000, has proven to be a leading candidate for numerical simulations in an increasingly wide range of applications, including seismic exploration for oil and gas, weather and climate modeling, and electromagnetics, among others. This is the first survey in book format of the RBF-FD methodology and is suitable as the text for a one-semester first-year graduate class.
?Adapted from a series of lectures given by the authors, this monograph focuses on radial basis functions (RBFs), a powerful numerical methodology for solving PDEs to high accuracy in any number of dimensions. This method applies to problems across a wide range of PDEs arising in fluid mechanics, wave motions, astro- and geosciences, mathematical biology, and other areas and has lately been shown to compete successfully against the very best previous approaches on some large benchmark problems. Using examples and heuristic explanations to create a practical and intuitive perspective, the authors address how, when, and why RBF-based methods work.? The authors trace the algorithmic evolution of RBFs, starting with brief introductions to finite difference (FD) and pseudospectral (PS) methods and following a logical progression to global RBFs and then to RBF-generated FD (RBF-FD) methods. The RBF-FD method, conceived in 2000, has proven to be a leading candidate for numerical simulations in an increasingly wide range of applications, including seismic exploration for oil and gas, weather and climate modeling, and electromagnetics, among others.? This is the first survey in book format of the RBF-FD methodology and is suitable as the text for a one-semester first-year graduate class.
At almost all academic institutions worldwide, complex variables and analytic functions are utilized in courses on applied mathematics, physics, engineering, and other related subjects. For most students, formulas alone do not provide a sufficient introduction to this widely taught material, yet illustrations of functions are sparse in current books on the topic. This is the first primary introductory textbook on complex variables and analytic functions to make extensive use of functional illustrations. Aiming to reach undergraduate students entering the world of complex variables and analytic functions, this book utilizes graphics to visually build on familiar cases and illustrate how these same functions extend beyond the real axis. It covers several important topics that are omitted in nearly all recent texts, including techniques for analytic continuation and discussions of elliptic functions and of WienerHopf methods. It also presents current advances in research, highlighting the subjects active and fascinating frontier. The primary audience for this textbook is undergraduate students taking an introductory course on complex variables and analytic functions. It is also geared toward graduate students taking a second semester course on these topics, engineers and physicists who use complex variables in their work, and students and researchers at any level who want a reference book on the subject.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.