This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.
Thermal treatment of materials occupies a significant, increasing proportion of MSE activity and is an integral component of modern curricula as well as a highly monetized component of industrial production. Laser processing of materials offers advantages over conventional methods of processing. Some of these advantages include fast processing, precision of operation, low cost and local treatment. Analytical modeling of laser processing gives insight into the physical and mathematical aspects of the problem and provides useful information on process optimization. This work from Professor Yilbas, a world-recognized expert in laser materials processing, provides the necessary depth and weight of analysis, collating mathematical and physical modeling and experimentation with the necessary discussion of applications. It meets coherence in topics with high technical quality. It encompasses the basics of laser processing and provides an introduction to analytical modeling of the process. Fundamentals and formulation of the heating process are presented for numerous heating conditions. - Detailed analytical solutions for laser heating problems (including thermal stress) aids analysis of linkage between process parameters, such as laser pulse and laser intensity, and material response, such as temperature and stress - Encompasses practical solutions to thermal heating problems (unlike the length solutions of numerical schemes) - Extensive fourier and non-fourier treatments and consequent analysis provides improved understanding of mathematical transformations
The Laser Cutting Process: Analysis and Applications presents a comprehensive understanding of the laser cutting process and its practical applications. The book includes modeling, such as thermal and stress analysis, along with lamp parameter analysis for kerf width predictions and their practical applications, such as laser cutting of metallic and non-metallic materials and assessment of quality. The book provides analytical considerations for laser cutting, the importance of the affecting parameters, stress levels formed in the cutting section, cutting efficiency and cut morphology and metallurgy. It is designed to be used by individuals working in laser machining and high energy processing. - Fills the gap between a fundamental understanding of the laser cutting process and the shortcomings of the industrial (practical) applications - Discusses new developments in the laser cutting process of difficult to cut materials - Includes thermal analysis for various metallic and non-metallic materials - Provides information on Quality Assessment Methods
Heat Transport in Micro- and Nanoscale Thin Films presents aspects and applications of the principle methods of heat transport in relation to nanoscale films. Small-scale parts and thin films are widely used in the electronics industry. However, the drastic change in the thermal conductivity with reducing device size and film thickness modifies the energy transport by heat-carrying phonons in the film. Energy transfer in small-sized devices and thin films deviate from the classical diffusion to radiative transport. This book deals with micro/nano scale heat transfer in small scale devices and the thin films, including interface properties of cross-plane transport. The book fills the gap between applications of the physical fundamentals and energy transport at the micro- and nano scale, which will be valuable for academics, researchers and students in the fields of materials science and energy transport. - Offers a specialist focus on nanoscale thin films, allowing the reader to create more efficient heat transfer systems - Includes in-depth coverage of the formulation of transient energy transport for short durations of heating, which is valuable those working in electronics - Focuses on applications and real-life case studies to clearly illustrate how the theories explained in the book can be used in industry
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.