Function Architecture Co-Design is a new paradigm for the design and implementation of embedded systems. Function/Architecture Optimization and Co-Design of Embedded Systems presents the authors' work in developing a function/architecture optimization and co-design formal methodology and framework for control-dominated embedded systems. The approach incorporates both data flow and control optimizations performed on a suitable novel intermediate design task representation. The aim is not only to enhance productivity of the designer and system developer, but also to improve quality of the final synthesis outcome. Function/Architecture Optimization and Co-Design of Embedded Systems discusses the proposed function/architecture co-design methodology, focusing on design representation, optimization, validation, and synthesis. Throughout the text, the difference between behavior specification and implementation is emphasized. The current need in co-design to move from synthesis-based technology to compiler-based technology is pointed out. The authors describe and show how performing data flow and control optimizations at the high abstraction level can lead to significant size and performance improvements in both the synthesized hardware and software. The work builds on bodies of research in the silicon and software compilation domains. The aforementioned techniques are specialized to the embedded systems domain. It is recognized that guided optimization can be applied on the internal design representation, no matter what the abstraction level, and need not be restricted to the final stages of software assembly code generation, or hardware synthesis. Function/Architecture Optimization and Co-Design of Embedded Systems will be of primary interest to researchers, developers, and professionals in the field of embedded systems design.
Embedded systems are informally defined as a collection of programmable parts surrounded by ASICs and other standard components, that interact continuously with an environment through sensors and actuators. The programmable parts include micro-controllers and Digital Signal Processors (DSPs). Embedded systems are often used in life-critical situations, where reliability and safety are more important criteria than performance. Today, embedded systems are designed with an ad hoc approach that is heavily based on earlier experience with similar products and on manual design. Use of higher-level languages such as C helps structure the design somewhat, but with increasing complexity it is not sufficient. Formal verification and automatic synthesis of implementations are the surest ways to guarantee safety. Thus, the POLIS system which is a co-design environment for embedded systems is based on a formal model of computation. POLIS was initiated in 1988 as a research project at the University of California at Berkeley and, over the years, grew into a full design methodology with a software system supporting it. Hardware-Software Co-Design of Embedded Systems: The POLIS Approach is intended to give a complete overview of the POLIS system including its formal and algorithmic aspects. Hardware-Software Co-Design of Embedded Systems: The POLIS Approach will be of interest to embedded system designers (automotive electronics, consumer electronics and telecommunications), micro-controller designers, CAD developers and students.
Function Architecture Co-Design is a new paradigm for the design and implementation of embedded systems. Function/Architecture Optimization and Co-Design of Embedded Systems presents the authors' work in developing a function/architecture optimization and co-design formal methodology and framework for control-dominated embedded systems. The approach incorporates both data flow and control optimizations performed on a suitable novel intermediate design task representation. The aim is not only to enhance productivity of the designer and system developer, but also to improve quality of the final synthesis outcome. Function/Architecture Optimization and Co-Design of Embedded Systems discusses the proposed function/architecture co-design methodology, focusing on design representation, optimization, validation, and synthesis. Throughout the text, the difference between behavior specification and implementation is emphasized. The current need in co-design to move from synthesis-based technology to compiler-based technology is pointed out. The authors describe and show how performing data flow and control optimizations at the high abstraction level can lead to significant size and performance improvements in both the synthesized hardware and software. The work builds on bodies of research in the silicon and software compilation domains. The aforementioned techniques are specialized to the embedded systems domain. It is recognized that guided optimization can be applied on the internal design representation, no matter what the abstraction level, and need not be restricted to the final stages of software assembly code generation, or hardware synthesis. Function/Architecture Optimization and Co-Design of Embedded Systems will be of primary interest to researchers, developers, and professionals in the field of embedded systems design.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.