This book provides the guidelines and fundamental methods of estimation and calculation needed by maintainability engineers. It also covers the management of maintainability efforts, including issues of organizational structure, cost, and planning processes. Questions and problems conclude each chapter.
Each year billions of dollars are being spent in the area of nuclear power generation to design, construct, manufacture, operate, and maintain various types of systems around the globe. Many times these systems fail due to safety, reliability, human factors, and human error related problems. The main objective of this book is to combine nuclear power plant safety, reliability, human factors, and human error into a single volume for those individuals that work closely during the nuclear power plant design phase, as well as other phases, thus eliminating the need to consult many different and diverse sources in obtaining the desired information.
As engineering systems become more and more complex, industry has recognized the importance of system and product reliability and places ever increasing emphasis on it during the design phase. Despite its efforts, however, industry continues to lose billions of dollars each year because of unexpected system failures. Therefore, it becomes increasingly important for designers and engineers to have a solid grounding in reliability engineering and keep abreast of new developments and research results.
Safety has become very important because each year a vast number of people die due to workplace and other accidents. For example, in the United States for the year 1996 as per the National Safety Council, there were 93,400 deaths and 20,700,000 disabling injuries due to workplace accidents, with a total loss of $121 billion. Today there are a large number of books available on safety, but to the best of the author's knowledge none covers both general and systems safety (i.e., at a significant depth) and application or specialized areas such as software safety, robot safety, health care safety, and maintenance safety. This book has been written to satisfy that vital need.
Due to global competition, safety regulations, and other factors, manufacturers are increasingly pressed to create products that are safe, highly reliable, and of high quality. Engineers and quality assurance professionals need a cross-disciplinary understanding of these topics in order to ensure high standards in the design and manufacturing proce
The demands of the global economy require manufacturers to produce highly reliable and easily maintainable engineering products. Recent studies indicate that for many large and sophisticated products or systems, maintenance, and support account for as much as 60 to 75 percent of their life cycle costs. Therefore, the role of maintainability, mainte
Engineering systems and products are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain systems and products around the globe. Because of this, global competition is requiring reliability professionals to work closely with other departments involved in engineering development during the product design and manufacturing phase. Applied Reliability for Engineers is an attempt to meet the need for a single volume that addresses a wide range of applied reliability topics. The material is treated in such a manner that the reader will require no previous knowledge to understand the text. The sources of most of the information presented are given in a reference section at the end of each chapter. At appropriate places, the book contains examples along with their solutions. At the end of each chapter there are numerous problems to test reader comprehension. This volume is thus suitable for use as a textbook as well as for reference. Applied Reliability for Engineers is useful to design professionals, system engineers, reliability specialists, graduate and senior undergraduate students, researchers and instructors of reliability engineering, and engineers-at-large.
Career success for engineers who wish to move up the management ladder, requires more than an understanding of engineering and technological principles OCo it demands a profound understanding of todayOCOs business management issues and principles. In this unique book, the author provides you with a valuable understanding of contemporary management concepts and their applications in a technical organization. You get in-depth coverage of product selection and management, engineering design and product costing, concurrent engineering, value management, configuration management, risk management, reengineering strategies and benefits, managing creativity and innovation, information technology management, and software management. The large number of solved examples highlighted throughout the text underscore the value of this book as an indispensable OC How ToOCO manual, and library reference piece.
To meet the needs of today, engineered products and systems are an important element of the world economy, and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of products and systems around the globe. This book integrates and combines three of those topics to meet today’s needs for the engineers working in these fields. This book provides a single volume that considers reliability, maintainability, and safety when designing new products and systems. Examples along with their solutions are placed at the end of each chapter to test readers’ comprehension. The book is written in a manner that readers do not need any previous knowledge of the subject, and many references are provided. This book is also useful to many people, including design engineers, system engineers, reliability specialists, safety professionals, maintainability engineers, engineering administrators, graduate and senior undergraduate students, researchers, and instructors.
This book provides the design engineer with concise information on the most important advanced methods that have emerged in recent years for the design of structures, products and components. While these methods have been discussed in the professional literature, this is the first full presentation of their key principles and features in a single convenient volume. Both veteran and beginning design engineers will find new information and ideas in this book for improving the design engineering process in terms of quality, reliability, cost control and timeliness. Each advanced design concept is examined thoroughly, but in a concise way that presents the essentials clearly and quickly. The author is a leading engineering educator whose many books on design engineering methods, engineering management and quality control have been published in different languages throughout the world. This recent book is available for prompt delivery. To receive your copy quickly, please order now. An order form follows the complete table of contents on the reverse.
Creativity is playing an ever more important role in the success or failure of organizations in the global competitive economy. The field of engineering is no exception. The objective of this book is to satisfy this vital need, which has been covered very little elsewhere.The book, which assumes no prior knowledge, will be useful to many people including all kinds of professional engineers, engineering managers, graduate and senior undergraduate students of engineering, and researchers and instructors in engineering, psychology, and business administration. At the end of each chapter there are numerous problems to test readers' comprehension. The book also includes a comprehensive list of references directly or indirectly related to creativity in engineering.
Of the more than $300 billion spent on plant maintenance and operations, U.S. industry spends as much as 80 percent of this amount to correct chronic failures of machines, systems, and people. With machines and systems becoming increasingly complex, this problem can only worsen, and there is a clear and pressing need to establish comprehensive equi
During day-to-day use, thousands of lives are lost each year due to accidents, directly or indirectly, resulting from poor transportation system reliability and safety. In the United States, automobile accidents alone result in around 42,000 deaths per year, costing billions of dollars to the economy each year. A common subject in journal articles
Although Reliability Engineering can trace its roots back to World War II, its application to medical devices is relatively recent, and its treatment in the published literature has been quite limited. With the medical device industry among the fastest growing segments of the US economy, it is vital that the engineering, biomedical, manufacturing,
Human reliability, error, and human factors in the area of power generation have been receiving increasing attention in recent years. Each year billions of dollars are spent in the area of power generation to design, construct/manufacture, operate, and maintain various types of power systems around the globe, and such systems often fail due to human error. This book compiles various recent results and data into one volume, and eliminates the need to consult many diverse sources to obtain vital information. It enables potential readers to delve deeper into a specific area, providing the source of most of the material presented in references at the end of each chapter. Examples along with solutions are also provided at appropriate places, and there are numerous problems for testing the reader’s comprehension. Chapters cover a broad range of topics, including general methods for performing human reliability and error analysis in power plants, specific human reliability analysis methods for nuclear power plants, human factors in control systems, and human error in power plant maintenance. They are written in such a manner that the potential reader requires no previous knowledge to understand their contents. “Human Reliability, Error, and Human Factors in Power Generation” will prove useful to many individuals, including engineering professionals working in the power generation industry, researchers, instructors, and undergraduate and graduate students in the field of power engineering.
This book provides the design engineer with concise information on the most important advanced methods that have emerged in recent years for the design of structures, products and components. While these methods have been discussed in the professional literature, this is the first full presentation of their key principles and features in a single convenient volume. Both veteran and beginning design engineers will find new information and ideas in this book for improving the design engineering process in terms of quality, reliability, cost control and timeliness. Each advanced design concept is examined thoroughly, but in a concise way that presents the essentials clearly and quickly. The author is a leading engineering educator whose many books on design engineering methods, engineering management and quality control have been published in different languages throughout the world. This recent book is available for prompt delivery. To receive your copy quickly, please order now. An order form follows the complete table of contents on the reverse.
This book provides the guidelines and fundamental methods of estimation and calculation needed by maintainability engineers. It also covers the management of maintainability efforts, including issues of organizational structure, cost, and planning processes. Questions and problems conclude each chapter.
The safety, maintainability, and maintenance of systems have become more important than ever before. Global competition and other factors are forcing manufacturers to produce highly safe and easily maintainable engineering systems. This means that there is a definite need for safety, maintainability, and maintenance professionals to work closely during the system design and other phases of a project, and this book will help with that. System Safety, Maintainability, and Maintenance for Engineers presents, in a single volume, what engineers will need when designing systems from the fields of safety, maintainability, and maintenance of systems when they have to all work together on one project and it provides information that the reader will require no previous knowledge to understand. Also offered are sources in the reference section at the end of each chapter so that the reader is able to find further information if needed. For reader comprehension, examples along with their solutions are included at the end of each chapter. This book will be useful to many people including design engineers; system engineers; safety specialists; maintainability engineers; maintenance engineers; engineering managers; graduate and senior undergraduate students of engineering; researchers and instructors of safety, maintainability, and maintenance; and engineers-at-large.
Engineering systems and products are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain systems and products around the globe. Because of this, global competition is requiring reliability professionals to work closely with other departments involved in engineering development during the product design and manufacturing phase. Applied Reliability for Engineers is an attempt to meet the need for a single volume that addresses a wide range of applied reliability topics. The material is treated in such a manner that the reader will require no previous knowledge to understand the text. The sources of most of the information presented are given in a reference section at the end of each chapter. At appropriate places, the book contains examples along with their solutions. At the end of each chapter there are numerous problems to test reader comprehension. This volume is thus suitable for use as a textbook as well as for reference. Applied Reliability for Engineers is useful to design professionals, system engineers, reliability specialists, graduate and senior undergraduate students, researchers and instructors of reliability engineering, and engineers-at-large.
As engineering systems become more and more complex, industry has recognized the importance of system and product reliability and places ever increasing emphasis on it during the design phase. Despite its efforts, however, industry continues to lose billions of dollars each year because of unexpected system failures. Therefore, it becomes increasingly important for designers and engineers to have a solid grounding in reliability engineering and keep abreast of new developments and research results.
Robots are increasingly being used in industry to perform various types of tasks. Some of the tasks performed by robots in industry are spot welding, materials handling, arc welding, and routing. The population of robots is growing at a significant rate in various parts of the world; for example, in 1984, a report published by the British Robot Association indicated a robot popula tion distribution between Japan (64,600), Western Europe (20,500), and the United States (13,000). This shows a significant number of robots in use. Data available for West Germany and the United Kingdom indicate that in 1977 there were 541 and 80 robots in use, respectively, and in 1984 these numbers went up to 6600 and 2623, respectively. Just as for other engineering products, the reliability and safety of robots are important. A robot has to be safe and reliable. An unreliable robot may become the cause of unsafe conditions, high maintenance costs, inconvenience, etc. Robots make use of electrical, mechanical, pneumatic, electronic, and hydraulic parts. This makes their reliability problem a challenging task because of the many different sources of failures. According to some published literature, the best mean time between failures (MTBF) achieved by robots is only 2500 hours. This means there is definite room for further improvement in robot reliability. With respect to safety, there have been five fatal accidents involving robots since 1978.
In an approach that combines coverage of safety and human error into a single volume, Safety and Human Error in Engineering Systems eliminates the need to consult many different and diverse sources for those who need information about both topics. The book begins with an introduction to aspects of safety and human error and a discussion of mathemat
To meet the needs of today, engineered products and systems are an important element of the world economy, and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of products and systems around the globe. This book integrates and combines three of those topics to meet today’s needs for the engineers working in these fields. This book provides a single volume that considers reliability, maintainability, and safety when designing new products and systems. Examples along with their solutions are placed at the end of each chapter to test readers’ comprehension. The book is written in a manner that readers do not need any previous knowledge of the subject, and many references are provided. This book is also useful to many people, including design engineers, system engineers, reliability specialists, safety professionals, maintainability engineers, engineering administrators, graduate and senior undergraduate students, researchers, and instructors.
Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before. Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering systems.
The effective and interrelated functioning of system reliability technology, human factors, and quality play an important role in the appropriate, efficient, and cost-effective delivery of health care. Simply put, it can save you time, money, and more importantly, lives. Over the years a large number of journal and conference proceedings articles o
Due to global competition, safety regulations, and other factors, manufacturers are increasingly pressed to create products that are safe, highly reliable, and of high quality. Engineers and quality assurance professionals need a cross-disciplinary understanding of these topics in order to ensure high standards in the design and manufacturing proce
An Insightful Guide to Avoiding Offshore Oil- and Gas-Industry Disaster Designing, constructing, operating, and maintaining offshore oil and gas industry equipment and systems can sometimes result in accidents, injuries, and other serious problems. Safety and Reliability in the Oil and Gas Industry: A Practical Approach focuses on oil and gas indus
The demands of the global economy require manufacturers to produce highly reliable and easily maintainable engineering products. Recent studies indicate that for many large and sophisticated products or systems, maintenance, and support account for as much as 60 to 75 percent of their life cycle costs. Therefore, the role of maintainability, mainte
Cradle-to-grave analyses are becoming the norm, as an increasing amount of corporations and government agencies are basing their procurement decisions not only on initial costs but also on life cycle costs. And while life cycle costing has been covered in journals and conference proceedings, few, if any, books have gathered this information into an
Engineering systems are an important element of world economy. Each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems about the globe. The reliability and usability of these systems have become important because of their increasing complexity, sophistication, and non-specialist users. Global competition and other factors are forcing manufacturers to produce highly reliable and usable engineering systems. Along with examples and solutions, this book integrates engineering systems reliability and usability into a single volume for those individuals that directly or indirectly are concerned with these areas.
Global competition is forcing reliability and other professionals to work closely during the product design and manufacturing phase. Because of this collaboration, reliability, usability, and quality principles are being applied across many diverse sectors of the economy. This book offers the principles, methods, and procedures for these areas in one resource. This book brings together the areas of reliability, usability, and quality for those working in diverse areas to allow them to be exposed to activities that can help them perform their tasks more effectively. This is the only book that covers these areas together in this manner and written in such a way that no previous knowledge is required to understand it. The sources of the material presented are included in the reference section at the end of each chapter along with examples and solutions to test reader comprehension. Applied Reliability, Usability, and Quality for Engineers is useful to design, manufacturing, and systems engineers, as well as manufacturing managers, reliability, usability and, quality specialists. It can also be helpful to graduate, senior undergraduate students, and instructors.
With unintended harm during hospital care costing billions of dollars to the world economy, not to mention millions of deaths each year, it's no wonder the issue is equally front and center in the minds of healthcare providers and the public. Although the issue has been tackled in journal articles and conference proceedings, there are very few book
Each year billions of dollars are being spent in the area of nuclear power generation to design, construct, manufacture, operate, and maintain various types of systems around the globe. Many times these systems fail due to safety, reliability, human factors, and human error related problems. The main objective of this book is to combine nuclear power plant safety, reliability, human factors, and human error into a single volume for those individuals that work closely during the nuclear power plant design phase, as well as other phases, thus eliminating the need to consult many different and diverse sources in obtaining the desired information.
Human reliability and error have become a very important issue in health care, owing to the vast number of associated deaths each year. For example, according to the findings of the Institute of Medicine in 1999, around 100000 Americans die each year because of human error. This makes human error in health care the eighth leading cause of deaths in the US. Moreover, the total annual national cost of the medical errors is estimated at between $17 billion and $37.6 billion.There are very few books on this subject, and none of them covers it at a significant depth. The need for a book presenting the basics of human reliability, human factors and comprehensive information on error in medical systems is essential. This book meets that need.
Safety has become very important because each year a vast number of people die due to workplace and other accidents. For example, in the United States for the year 1996 as per the National Safety Council, there were 93,400 deaths and 20,700,000 disabling injuries due to workplace accidents, with a total loss of $121 billion. Today there are a large number of books available on safety, but to the best of the author's knowledge none covers both general and systems safety (i.e., at a significant depth) and application or specialized areas such as software safety, robot safety, health care safety, and maintenance safety. This book has been written to satisfy that vital need.
Although Reliability Engineering can trace its roots back to World War II, its application to medical devices is relatively recent, and its treatment in the published literature has been quite limited. With the medical device industry among the fastest growing segments of the US economy, it is vital that the engineering, biomedical, manufacturing,
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.