manifolds, transformation groups, and Lie algebras, as well as the basic concepts of visual topology. It was also agreed that the course should be given in as simple and concrete a language as possible, and that wherever practic able the terminology should be that used by physicists. Thus it was along these lines that the archetypal course was taught. It was given more permanent form as duplicated lecture notes published under the auspices of Moscow State University as: Differential Geometry, Parts I and II, by S. P. Novikov, Division of Mechanics, Moscow State University, 1972. Subsequently various parts of the course were altered, and new topics added. This supplementary material was published (also in duplicated form) as Differential Geometry, Part III, by S. P. Novikov and A. T. Fomenko, Division of Mechanics, Moscow State University, 1974. The present book is the outcome of a reworking, re-ordering, and ex tensive elaboration of the above-mentioned lecture notes. It is the authors' view that it will serve as a basic text from which the essentials for a course in modern geometry may be easily extracted. To S. P. Novikov are due the original conception and the overall plan of the book. The work of organizing the material contained in the duplicated lecture notes in accordance with this plan was carried out by B. A. Dubrovin.
manifolds, transformation groups, and Lie algebras, as well as the basic concepts of visual topology. It was also agreed that the course should be given in as simple and concrete a language as possible, and that wherever practic able the terminology should be that used by physicists. Thus it was along these lines that the archetypal course was taught. It was given more permanent form as duplicated lecture notes published under the auspices of Moscow State University as: Differential Geometry, Parts I and II, by S. P. Novikov, Division of Mechanics, Moscow State University, 1972. Subsequently various parts of the course were altered, and new topics added. This supplementary material was published (also in duplicated form) as Differential Geometry, Part III, by S. P. Novikov and A. T. Fomenko, Division of Mechanics, Moscow State University, 1974. The present book is the outcome of a reworking, re-ordering, and ex tensive elaboration of the above-mentioned lecture notes. It is the authors' view that it will serve as a basic text from which the essentials for a course in modern geometry may be easily extracted. To S. P. Novikov are due the original conception and the overall plan of the book. The work of organizing the material contained in the duplicated lecture notes in accordance with this plan was carried out by B. A. Dubrovin.
Developments in Geochemistry, Volume 3: Helium Isotopes in Nature presents the isotopic investigations of noble gases. This book describes the origin, the history, and the contemporary distribution of isotopes of helium. Organized into 11 chapters, this volume begins with an overview of mass-spectrometric methods and measurements of the helium isotope abundance. This text then discusses the methods of collecting various terrestrial samples as well as the apparatus for helium extraction, volumetric measurements, and purification. Other chapters consider the isotope composition of primordial, radiogenic, and spallogenic light noble gases. This book discusses as well the origin and distribution of helium isotopes in meteorites, in the Earth's mantle, the crust and ocean, and in the atmosphere. The final chapter deals with the scientific and applied problems that can be resolved to the progress in helium isotope geochemistry. This book is a valuable resource for scientists. Research workers and students interested in the geochemistry of helium will also find this book useful.
manifolds, transformation groups, and Lie algebras, as well as the basic concepts of visual topology. It was also agreed that the course should be given in as simple and concrete a language as possible, and that wherever practic able the terminology should be that used by physicists. Thus it was along these lines that the archetypal course was taught. It was given more permanent form as duplicated lecture notes published under the auspices of Moscow State University as: Differential Geometry, Parts I and II, by S. P. Novikov, Division of Mechanics, Moscow State University, 1972. Subsequently various parts of the course were altered, and new topics added. This supplementary material was published (also in duplicated form) as Differential Geometry, Part III, by S. P. Novikov and A. T. Fomenko, Division of Mechanics, Moscow State University, 1974. The present book is the outcome of a reworking, re-ordering, and ex tensive elaboration of the above-mentioned lecture notes. It is the authors' view that it will serve as a basic text from which the essentials for a course in modern geometry may be easily extracted. To S. P. Novikov are due the original conception and the overall plan of the book. The work of organizing the material contained in the duplicated lecture notes in accordance with this plan was carried out by B. A. Dubrovin.
Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.
This volume is a classic survey of algebraic geometry and topological methods in various problems of mathematical physics and provides an excellent reference text for graduate students and researchers. The book is divided into three sections: the first part concerns Hamiltonian formalism and methods that generalise Morse for certain dynamical systems of physical origin; the second part presents algebraic geometry analysis of the Yang-Baxter equations for two dimensional models; part three presents the theory of multidimensional theta functions of Abel, Riemann, Poincare in a form that is elementary and convenient for applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.