Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. - Integrates the fundamentals of conducting polymers and a range of multifunctional applications - Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials - Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers - Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices
Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications offers a comprehensive paperback on the aerospace relevance of polymer/carbonaceous nanofiller-based nanocomposite. This manuscript summarizes all specific information on the design, fabrication and application areas of aerospace industry that employ polymer/carbonaceous nanofiller-based nanocomposites. In addition, it points to the potential of aeronautical nanocomposites towards lightning strike, radiation shielding, anti-corrosion, electronic/optical features, thermal management, antistatic application, self-healing aptitude, and green nanocomposites. The modeling of mechanical and essential properties of aerospace nanocomposites is also discussed, along with challenges and future forecasts of polymer/carbonaceous nanofiller nanocomposites. - Focuses on essential aerospace composites, carbonaceous nanofillers, and ensuing polymer/carbonaceous nanofiller-based nanocomposites - Explores indispensable properties of aeronautical nanocomposites, modeling of physical properties, and combined influence of carbonaceous nanofillers and carbon fibers on space material properties - Includes up-to-date technical applications of polymer/carbonaceous nanofiller-based nanocomposites in design, mechanical robustness, heat resistance, non-flammability, anti-corrosion, radiation shielding, lightning strike prevention, electronic/optical features, antistatic application, self-healing, thermal management, and green nanocomposites for aeronautical relevance
Polymer/Nanodiamond Nanocomposites: Fundamentals, Properties and Applications provides an up-to-date review of these materials. The structure, design, processing, and properties, as well as technological advancements, are all thoroughly discussed. Several practical and potential application areas are also identified such as tribological aerospace/automobile materials (thermally conducting, lubricant, and radiation shielding), coatings/anti-corrosion nanomaterials, shape memory nanocomposites, energy devices (Li ion batteries and solar cells), and biomedical nanomaterials (drug delivery, tissue engineering, biosensor, imaging). Current difficulties and potential opportunities are also discussed in detail. Polymer/Nanodiamond Nanocomposites: Fundamentals, Properties and Applications covers all aspects of these new novel materials' design, structure, manufacture, and applications. The book offers an up-to-date comprehensive knowledge resource for materials scientists, researchers, and engineers. - Covers the latest advances in polymer/nanodiamond nanocomposites - Includes important fundamentals, properties, and applications - Examines nanodiamond nanobifiller derived polymeric nanocomposites - Discusses a wide range of technical applications in aerospace, automobiles, coatings, corrosion resistance, shape memory, energy devices, and biomedical fields
Polymer/Fullerene Nanocomposites: Design and Applications synopsizes state-of-the-art essentials and versatile inventions in polymers and fullerenes derived nanocomposites. As the design, fabrication and exploration of polymeric materials with fullerenes in advanced nanomaterials is progressing quickly because of their unique combination of properties, including optical, electronic, electrical, mechanical, thermal, photovoltaic, sensing, shape memory, capacitive, antimicrobial, and other applications, this book fills a void in literature compilation and assessment for a field still in its infancy. The introductory chapter of this manuscript provides a comprehensive update on the fundamentals and applications of fullerenes, with following chapters revealing the properties and essential aspects of polymeric nanocomposites. - Reconnoiters state-of-the-art of fullerenes - Focuses on fullerene nano-additives, developing covalent interactions, and physical dispersion with conjugated polymers and other polymeric matrices - Emphasizes fullerene nanowhisker and nanoball nanofillers in nanocomposites - Unfolds advanced applications of polymer/fullerene nanomaterials in stimuli-responsive systems, optoelectronic devices (photovoltaics, light emitting diodes and optical sensors), fuel cells, supercapacitors and biomedical fields
Shape Memory Polymer derived Nanocomposites: Features to Cutting-Edge Advancements summarizes the up-to-date of fundamentals and applications of the shape memory polymer derived nanocomposites. Design and fabrication of shape memory polymeric nanocomposites have gained significant importance in the field of up-to-date nano/materials science and technology. In recent times, the shape memory polymers and nanocomposites have attracted considerable academic and industrial research interest. This feature book will present a state-of-the-art assessment on the versatile shape memory materials. The flexibility, durability, heat stability, shape deformability, and shape memory features of these polymers have shown dramatic improvements with the nanofiller addition. Appropriate choice of the stimuli-responsive polymer, nanofiller type and content, and fabrication strategies may lead to enhanced physicochemical features and stimuli-responsive performance. Several successful stimuli-responsive effects have been achieved in the shape memory nanocomposites such as thermo-responsive, electro-active, photo-active, water/moisture-responsive, pH-sensitive, etc. Consequently, the shape memory polymer based nanocomposites have found applications in high-tech devices and applications. This book initially offers a futuristic knowledge regarding indispensable features of the shape memory polymeric nanocomposites. Afterwards, the essential categories of the stimuli-responsive polymer-based nanocomposites have been discussed in terms of recent scientific literature. Subsequent sections of this book are dedicated to the potential of shape memory polymer-based nanocomposite in various technical fields. Significant application areas have been identified as foam materials, aerospace, radiation shielding, sensor, actuator, supercapacitor, electronics and biomedical relevance. The book chapters also point towards the predictable challenges and future opportunities in the field of shape memory nanocomposites. - Provides the essentials of shape memory polymeric nanocomposites - Includes important categories of shape memory nanocomposites - Presents current technological applications of shape memory polymers and derived nanocomposite in sponges, aerospace, EMI shielding, ionizing radiation shielding, sensors, actuator, supercapacitor, electronics, and biomedical fields
Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications offers detailed information on all aspects of conductive composites. These composites offer many benefits in comparison to traditional conductive materials, and have a broad range of applications, including electronic packaging, capacitors, thermistors, fuel cell devices, dielectrics, piezoelectric functions and ferroelectric memories. Sections cover the theory of electrical conductivity and the different categories of conductive composites, describing percolation threshold, tunneling effect and other phenomena in the field. Subsequent chapters present thorough coverage of the key phases in the development and use of conductive composites, including manufacturing methods, external parameters, applications, modelling and testing methods. This is an essential source of information for materials scientists and engineers working in the fields of polymer technology, processing and engineering, enabling them to improve manufacture and testing methods, and to benefit fully from applications. The book also provides industrial and academic researchers with a comprehensive and up-to-date understanding of conductive composites and related issues. - Explains the methods used in the manufacture and testing of conductive composites, and in the modeling of electrical conductivity - Contains specialized information on the full range of applications for conductive composites, including conductive adhesives or pastes - Brings scientists, engineers and researchers up-to-date with the latest advances in the field
Graphene to Polymer/Graphene Nanocomposites: Emerging Research and Opportunities brings together the latest advances and cutting-edge methods in polymer/graphene nanocomposites that offer attractive properties and features, leading to a broad range of valuable applications. The initial chapters of this book explain preparation, properties, modification, and applications of graphene and graphene-based multifunctional polymeric nanocomposites. Later, the state-of-the-art potential of polymer/graphene nanocomposites for hierarchical nanofoams, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, etc., has been elucidated. The subsequent chapters focus on specific innovations and applications including stimuli-responsive graphene-based materials, anticorrosive coatings, applications in electronics and energy devices, gas separation and filtration membrane applications, aerospace applications, and biomedical applications. Throughout the book, challenges, and future opportunities in the field of polymer/graphene nanocomposites are discussed and analyzed. This is an important resource for researchers, scientists, and students/academics working with graphene and across the fields of polymer composites, nanomaterials, polymer science, chemistry, chemical engineering, biomedical engineering, materials science, and engineering, as well those in an industrial setting who are interested in graphene or innovative materials. - Explores the fundamentals, preparation, properties, processing, and applications of graphene and multifunctional polymer-graphene nanocomposites. - Focuses on the state of the art including topics such as nano-foam architectures, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, and other graphene nanostructures. - Provides advanced applications including shape memory materials, anticorrosion materials, electronics and energy devices, gas separation and filtration membranes, aerospace relevance, and biomedical applications.
Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications offers a comprehensive paperback on the aerospace relevance of polymer/carbonaceous nanofiller-based nanocomposite. This manuscript summarizes all specific information on the design, fabrication and application areas of aerospace industry that employ polymer/carbonaceous nanofiller-based nanocomposites. In addition, it points to the potential of aeronautical nanocomposites towards lightning strike, radiation shielding, anti-corrosion, electronic/optical features, thermal management, antistatic application, self-healing aptitude, and green nanocomposites. The modeling of mechanical and essential properties of aerospace nanocomposites is also discussed, along with challenges and future forecasts of polymer/carbonaceous nanofiller nanocomposites. - Focuses on essential aerospace composites, carbonaceous nanofillers, and ensuing polymer/carbonaceous nanofiller-based nanocomposites - Explores indispensable properties of aeronautical nanocomposites, modeling of physical properties, and combined influence of carbonaceous nanofillers and carbon fibers on space material properties - Includes up-to-date technical applications of polymer/carbonaceous nanofiller-based nanocomposites in design, mechanical robustness, heat resistance, non-flammability, anti-corrosion, radiation shielding, lightning strike prevention, electronic/optical features, antistatic application, self-healing, thermal management, and green nanocomposites for aeronautical relevance
Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. - Integrates the fundamentals of conducting polymers and a range of multifunctional applications - Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials - Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers - Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices
Today, more than ever, jihad signifies the political opposition between Islam and the West. As the line drawn between Muslims and non-Muslims becomes more rigid, Jalal seeks to retrieve the ethical meanings of this core Islamic principle in South Asian history. Drawing on historical, legal, and literary sources, Jalal traces the intellectual itinerary of jihad through several centuries and across the territory connecting the Middle East with South Asia.
Graphene to Polymer/Graphene Nanocomposites: Emerging Research and Opportunities brings together the latest advances and cutting-edge methods in polymer/graphene nanocomposites that offer attractive properties and features, leading to a broad range of valuable applications. The initial chapters of this book explain preparation, properties, modification, and applications of graphene and graphene-based multifunctional polymeric nanocomposites. Later, the state-of-the-art potential of polymer/graphene nanocomposites for hierarchical nanofoams, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, etc., has been elucidated. The subsequent chapters focus on specific innovations and applications including stimuli-responsive graphene-based materials, anticorrosive coatings, applications in electronics and energy devices, gas separation and filtration membrane applications, aerospace applications, and biomedical applications. Throughout the book, challenges, and future opportunities in the field of polymer/graphene nanocomposites are discussed and analyzed. This is an important resource for researchers, scientists, and students/academics working with graphene and across the fields of polymer composites, nanomaterials, polymer science, chemistry, chemical engineering, biomedical engineering, materials science, and engineering, as well those in an industrial setting who are interested in graphene or innovative materials. - Explores the fundamentals, preparation, properties, processing, and applications of graphene and multifunctional polymer-graphene nanocomposites. - Focuses on the state of the art including topics such as nano-foam architectures, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, and other graphene nanostructures. - Provides advanced applications including shape memory materials, anticorrosion materials, electronics and energy devices, gas separation and filtration membranes, aerospace relevance, and biomedical applications.
The military rule of General Zia ul-Haq, former President of Pakistan, had significant political repercussions for the country. Islamization policies were far more pronounced and control over women became the key marker of the state's adherence to religious norms. Women's rights activists mobilized as a result, campaigning to reverse oppressive policies and redefine the relationship between state, society and Islam. Their calls for a liberal democracy led them to be targeted and suppressed. This book is a history of the modern women's movement in Pakistan. The research is based on documents from the Women's Action Forum archives, court judgments on relevant cases, as well as interviews with activists, lawyers and judges and analysis of newspapers and magazines. Ayesha Khan argues that the demand for a secular state and resistance to Islamization should not be misunderstood as Pakistani women sympathizing with a western agenda. Rather, their work is a crucial contribution to the evolution of the Pakistani state. The book outlines the discriminatory laws and policies that triggered domestic and international outcry, landmark cases of sexual violence that rallied women activists together and the important breakthroughs that enhanced women's rights. At a time when the women's movement in Pakistan is in danger of shrinking, this book highlights its historic significance and its continued relevance today.
The contents of this book cover Amritsar dreams of revolution, remembering Partition, living and walking Bombay, on the postcolonial moment, Pakistan and Uncle Sam's Cold War, and much more.
Polymer/Fullerene Nanocomposites: Design and Applications synopsizes state-of-the-art essentials and versatile inventions in polymers and fullerenes derived nanocomposites. As the design, fabrication and exploration of polymeric materials with fullerenes in advanced nanomaterials is progressing quickly because of their unique combination of properties, including optical, electronic, electrical, mechanical, thermal, photovoltaic, sensing, shape memory, capacitive, antimicrobial, and other applications, this book fills a void in literature compilation and assessment for a field still in its infancy. The introductory chapter of this manuscript provides a comprehensive update on the fundamentals and applications of fullerenes, with following chapters revealing the properties and essential aspects of polymeric nanocomposites. - Reconnoiters state-of-the-art of fullerenes - Focuses on fullerene nano-additives, developing covalent interactions, and physical dispersion with conjugated polymers and other polymeric matrices - Emphasizes fullerene nanowhisker and nanoball nanofillers in nanocomposites - Unfolds advanced applications of polymer/fullerene nanomaterials in stimuli-responsive systems, optoelectronic devices (photovoltaics, light emitting diodes and optical sensors), fuel cells, supercapacitors and biomedical fields
Shape Memory Polymer derived Nanocomposites: Features to Cutting-Edge Advancements summarizes the up-to-date of fundamentals and applications of the shape memory polymer derived nanocomposites. Design and fabrication of shape memory polymeric nanocomposites have gained significant importance in the field of up-to-date nano/materials science and technology. In recent times, the shape memory polymers and nanocomposites have attracted considerable academic and industrial research interest. This feature book will present a state-of-the-art assessment on the versatile shape memory materials. The flexibility, durability, heat stability, shape deformability, and shape memory features of these polymers have shown dramatic improvements with the nanofiller addition. Appropriate choice of the stimuli-responsive polymer, nanofiller type and content, and fabrication strategies may lead to enhanced physicochemical features and stimuli-responsive performance. Several successful stimuli-responsive effects have been achieved in the shape memory nanocomposites such as thermo-responsive, electro-active, photo-active, water/moisture-responsive, pH-sensitive, etc. Consequently, the shape memory polymer based nanocomposites have found applications in high-tech devices and applications. This book initially offers a futuristic knowledge regarding indispensable features of the shape memory polymeric nanocomposites. Afterwards, the essential categories of the stimuli-responsive polymer-based nanocomposites have been discussed in terms of recent scientific literature. Subsequent sections of this book are dedicated to the potential of shape memory polymer-based nanocomposite in various technical fields. Significant application areas have been identified as foam materials, aerospace, radiation shielding, sensor, actuator, supercapacitor, electronics and biomedical relevance. The book chapters also point towards the predictable challenges and future opportunities in the field of shape memory nanocomposites. - Provides the essentials of shape memory polymeric nanocomposites - Includes important categories of shape memory nanocomposites - Presents current technological applications of shape memory polymers and derived nanocomposite in sponges, aerospace, EMI shielding, ionizing radiation shielding, sensors, actuator, supercapacitor, electronics, and biomedical fields
Polymer/Nanodiamond Nanocomposites: Fundamentals, Properties and Applications provides an up-to-date review of these materials. The structure, design, processing, and properties, as well as technological advancements, are all thoroughly discussed. Several practical and potential application areas are also identified such as tribological aerospace/automobile materials (thermally conducting, lubricant, and radiation shielding), coatings/anti-corrosion nanomaterials, shape memory nanocomposites, energy devices (Li ion batteries and solar cells), and biomedical nanomaterials (drug delivery, tissue engineering, biosensor, imaging). Current difficulties and potential opportunities are also discussed in detail. Polymer/Nanodiamond Nanocomposites: Fundamentals, Properties and Applications covers all aspects of these new novel materials' design, structure, manufacture, and applications. The book offers an up-to-date comprehensive knowledge resource for materials scientists, researchers, and engineers. - Covers the latest advances in polymer/nanodiamond nanocomposites - Includes important fundamentals, properties, and applications - Examines nanodiamond nanobifiller derived polymeric nanocomposites - Discusses a wide range of technical applications in aerospace, automobiles, coatings, corrosion resistance, shape memory, energy devices, and biomedical fields
Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications offers detailed information on all aspects of conductive composites. These composites offer many benefits in comparison to traditional conductive materials, and have a broad range of applications, including electronic packaging, capacitors, thermistors, fuel cell devices, dielectrics, piezoelectric functions and ferroelectric memories. Sections cover the theory of electrical conductivity and the different categories of conductive composites, describing percolation threshold, tunneling effect and other phenomena in the field. Subsequent chapters present thorough coverage of the key phases in the development and use of conductive composites, including manufacturing methods, external parameters, applications, modelling and testing methods. This is an essential source of information for materials scientists and engineers working in the fields of polymer technology, processing and engineering, enabling them to improve manufacture and testing methods, and to benefit fully from applications. The book also provides industrial and academic researchers with a comprehensive and up-to-date understanding of conductive composites and related issues. - Explains the methods used in the manufacture and testing of conductive composites, and in the modeling of electrical conductivity - Contains specialized information on the full range of applications for conductive composites, including conductive adhesives or pastes - Brings scientists, engineers and researchers up-to-date with the latest advances in the field
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.