The Romans built enduring bridges well before Newton came along, armed simply with a working knowledge of mechanics and materials. In contrast, today's bridge building is an elaborate enterprise involving CAD tools, composite materials and acoustic imaging. When technology is pushed to its limits, a working knowledge proves inadequate, and an in-depth understanding of core physical principles, both macroscopic and microscopic, top-down vs bottom-up, becomes essential.We find ourselves today at a similar crossroad in semiconductor device technology, where a working knowledge of solid state electronics is no longer enough. Faced with the prohibitive cost of computing and the slowdown of chip manufacturing, device scaling and the global supply chain, the semiconductor industry is forced to explore alternate platforms such as 2-D materials, spintronics, analog processing and quantum engineering.This book combines top-down classical device physics with bottom-up quantum transport in a single venue to provide the basis for such a scientific exploration. It is essential, easy reading for beginning undergraduate and practicing graduate students, physicists unfamiliar with device engineering and engineers untrained in quantum physics. With just a modest pre-requisite of freshman maths, the book works quickly through key concepts in quantum physics, Matlab exercises and original homeworks, to cover a wide range of topics from chemical bonding to Hofstader butterflies, domain walls to Chern insulators, solar cells to photodiodes, FinFETs to Majorana fermions. For the practicing device engineer, it provides new concepts such as the quantum of resistance, while for the practicing quantum physicist, it provides new contexts such as the tunnel transistor.
This book explores the role of communication in development using the framework of communication designed for behaviour change. The author emphasizes the role of communication in advocacy, social mobilisation, training, research and programme support. The first section provides a historical perspective on communication and development, outlining how communication has evolved from a system of delivering messages to one consciously designed to elicit the participation of the people in development initiatives. Section two presents case-studies from the Indian perspective, which provides an analytical look at new approaches in the fields of elementary education and adult literacy, rural development and primary health care. The concluding section recommends a research-based professional approach to communication for behaviour change and suggests various crucial areas where strategic communication can play a pivotal role in development.
This is one of the best available graduate-level textbooks on electronic transport at the nanoscale. Its unique feature is providing a thorough and completely self-contained treatment of several theoretical formalisms for treating the transport problem. As such, the book is useful not only for the graduate students working in the field of nanoscale electrical transport, but also for the researchers who wish to expand their knowledge of various fundamental issues associated with this rapidly developing field. Of particular note are deep physical insights accompanying the rigorous mathematical derivations in each of the chapters, as well as the clear statement of all the approximations involved in a particular theoretical formalism. This winning combination makes the book very accessible to a reader with basic knowledge of quantum mechanics, solid state theory and thermodynamics/statistical mechanics. I give this book the highest recommendation.' [Read Full Review]Serfei A EgorovUniveristy of Virginia, USAThis book is aimed at senior undergraduates, graduate students and researchers interested in quantitative understanding and modeling of nanomaterial and device physics. With the rapid slow-down of semiconductor scaling that drove information technology for decades, there is a pressing need to understand and model electron flow at its fundamental molecular limits. The purpose of this book is to enable such a deconstruction needed to design the next generation memory, logic, sensor and communication elements. Through numerous case studies and topical examples relating to emerging technology, this book connects 'top down' classical device physics taught in electrical engineering classes with 'bottom up' quantum and many-body transport physics taught in physics and chemistry. The book assumes no more than a nodding acquaintance with quantum mechanics, in addition to knowledge of freshman level mathematics. Segments of this book are useful as a textbook for a course in nano-electronics.
This book describes the need of copyright protection for multimedia objects and develops an invisible image watermarking scheme to serve the purpose of copyright protection. Here intelligent systems are introduced to generate a better visual transparency with increased payload.
The book , ‘An Introduction to Phytoplanktons - Diversity and Ecology’ is very useful as it covers wide aspects of phytoplankton study including the general idea about cyanobacteria and algal kingdom. It contains different topics related to very basic idea of phytoplanktons such as, types ,taxonomic description and the key for identification etc. Together with it, very modern aspects of phytoplankton study including different methodologies needed for research students of botany, ecology, limnology and environmental biology are also included. The first chapter is very basic and informative and describes algal and phytoplankton classification, algal pigments, algal bloom and their control, algal toxins, wetlands algae, ecological significance of phytoplanktons etc. A general key for identification of common phytoplankton genera is also included for students who will be able to identify these genera based on the light microscopic characters. In Chapters 2-4, different aspects of phytoplankton research like primary productivity, community pattern analysis and their ecological parameter analysis have been discussed with detailed procedures. Statistical analysis is also discussed in detail. Chapter 5 includes case studies related to review, phytoplankton diversity and dynamics.
What will the worker, workplace and work itself look like in the future? Work 3.0 tackles this and some of the other most pressing and complex questions of the present age, head-on. Avik Chanda and Siddhartha Bandyopadhyay employ rigorous research supplemented with industry reports, business case studies, expert interviews, anecdotes, their personal expertise and insights, to present a rich multi-disciplinary brew that spans economics, statistics, public policy, history, sociology, psychology, law, political science, literature and philosophy. Highly ambitious in scope, astonishingly rich in analytical detail and far-reaching in its conclusions, the book will change the way you think about the future and how the past and present still shape it. Conceived as the ultimate future of work preparation guide, this book is essential reading for our tenuous and unpredictable times.
This book presents and analyzes methods to perform image co-segmentation. In this book, the authors describe efficient solutions to this problem ensuring robustness and accuracy, and provide theoretical analysis for the same. Six different methods for image co-segmentation are presented. These methods use concepts from statistical mode detection, subgraph matching, latent class graph, region growing, graph CNN, conditional encoder–decoder network, meta-learning, conditional variational encoder–decoder, and attention mechanisms. The authors have included several block diagrams and illustrative examples for the ease of readers. This book is a highly useful resource to researchers and academicians not only in the specific area of image co-segmentation but also in related areas of image processing, graph neural networks, statistical learning, and few-shot learning.
This exciting new resource covers various emerging applications of short range radars, including people counting and tracking, gesture sensing, human activity recognition, air-drawing, material classification, object classification, vital sensing by extracting features such as range-Doppler Images (RDI), range-cross range images, Doppler Spectrogram or directly feeding raw ADC data to the classifiers. The book also presents how deep learning architectures are replacing conventional radar signal processing pipelines enabling new applications and results. It describes how deep convolutional neural networks (DCNN), long-short term memory (LSTM), feedforward networks, regularization, optimization algorithms, connectionist This exciting new resource presents emerging applications of artificial intelligence and deep learning in short-range radar. The book covers applications ranging from industrial, consumer space to emerging automotive applications. The book presents several human-machine interface (HMI) applications, such as gesture recognition and sensing, human activity classification, air-writing, material classification, vital sensing, people sensing, people counting, people localization and in-cabin automotive occupancy and smart trunk opening. The underpinnings of deep learning are explored, outlining the history of neural networks and the optimization algorithms to train them. Modern deep convolutional neural network (DCNN), popular DCNN architectures for computer vision and their features are also introduced. The book presents other deep learning architectures, such as long-short term memory (LSTM), auto-encoders, variational auto-encoders (VAE), and generative adversarial networks (GAN). The application of human activity recognition as well as the application of air-writing using a network of short-range radars are outlined. This book demonstrates and highlights how deep learning is enabling several advanced industrial, consumer and in-cabin applications of short-range radars, which weren't otherwise possible. It illustrates various advanced applications, their respective challenges, and how they are been addressed using different deep learning architectures and algorithms.
This is one of the best available graduate-level textbooks on electronic transport at the nanoscale. Its unique feature is providing a thorough and completely self-contained treatment of several theoretical formalisms for treating the transport problem. As such, the book is useful not only for the graduate students working in the field of nanoscale electrical transport, but also for the researchers who wish to expand their knowledge of various fundamental issues associated with this rapidly developing field. Of particular note are deep physical insights accompanying the rigorous mathematical derivations in each of the chapters, as well as the clear statement of all the approximations involved in a particular theoretical formalism. This winning combination makes the book very accessible to a reader with basic knowledge of quantum mechanics, solid state theory and thermodynamics/statistical mechanics. I give this book the highest recommendation.' [Read Full Review]Serfei A EgorovUniveristy of Virginia, USAThis book is aimed at senior undergraduates, graduate students and researchers interested in quantitative understanding and modeling of nanomaterial and device physics. With the rapid slow-down of semiconductor scaling that drove information technology for decades, there is a pressing need to understand and model electron flow at its fundamental molecular limits. The purpose of this book is to enable such a deconstruction needed to design the next generation memory, logic, sensor and communication elements. Through numerous case studies and topical examples relating to emerging technology, this book connects 'top down' classical device physics taught in electrical engineering classes with 'bottom up' quantum and many-body transport physics taught in physics and chemistry. The book assumes no more than a nodding acquaintance with quantum mechanics, in addition to knowledge of freshman level mathematics. Segments of this book are useful as a textbook for a course in nano-electronics.
The Romans built enduring bridges well before Newton came along, armed simply with a working knowledge of mechanics and materials. In contrast, today's bridge building is an elaborate enterprise involving CAD tools, composite materials and acoustic imaging. When technology is pushed to its limits, a working knowledge proves inadequate, and an in-depth understanding of core physical principles, both macroscopic and microscopic, top-down vs bottom-up, becomes essential.We find ourselves today at a similar crossroad in semiconductor device technology, where a working knowledge of solid state electronics is no longer enough. Faced with the prohibitive cost of computing and the slowdown of chip manufacturing, device scaling and the global supply chain, the semiconductor industry is forced to explore alternate platforms such as 2-D materials, spintronics, analog processing and quantum engineering.This book combines top-down classical device physics with bottom-up quantum transport in a single venue to provide the basis for such a scientific exploration. It is essential, easy reading for beginning undergraduate and practicing graduate students, physicists unfamiliar with device engineering and engineers untrained in quantum physics. With just a modest pre-requisite of freshman maths, the book works quickly through key concepts in quantum physics, Matlab exercises and original homeworks, to cover a wide range of topics from chemical bonding to Hofstader butterflies, domain walls to Chern insulators, solar cells to photodiodes, FinFETs to Majorana fermions. For the practicing device engineer, it provides new concepts such as the quantum of resistance, while for the practicing quantum physicist, it provides new contexts such as the tunnel transistor.
This book explores the role of communication in development using the framework of communication designed for behaviour change. The author emphasizes the role of communication in advocacy, social mobilisation, training, research and programme support. The first section provides a historical perspective on communication and development, outlining how communication has evolved from a system of delivering messages to one consciously designed to elicit the participation of the people in development initiatives. Section two presents case-studies from the Indian perspective, which provides an analytical look at new approaches in the fields of elementary education and adult literacy, rural development and primary health care. The concluding section recommends a research-based professional approach to communication for behaviour change and suggests various crucial areas where strategic communication can play a pivotal role in development.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.