Humanoid Robots: Modeling and Control provides systematic presentation of the models used in the analysis, design and control of humanoid robots. The book starts with a historical overview of the field, a summary of the current state of the art achievements and an outline of the related fields of research. It moves on to explain the theoretical foundations in terms of kinematic, kineto-static and dynamic relations. Further on, a detailed overview of biped balance control approaches is presented. Models and control algorithms for cooperative object manipulation with a multi-finger hand, a dual-arm and a multi-robot system are also discussed. One of the chapters is devoted to selected topics from the area of motion generation and control and their applications. The final chapter focuses on simulation environments, specifically on the step-by-step design of a simulator using the Matlab® environment and tools. This book will benefit readers with an advanced level of understanding of robotics, mechanics and control such as graduate students, academic and industrial researchers and professional engineers. Researchers in the related fields of multi-legged robots, biomechanics, physical therapy and physics-based computer animation of articulated figures can also benefit from the models and computational algorithms presented in the book. Provides a firm theoretical basis for modelling and control algorithm design Gives a systematic presentation of models and control algorithms Contains numerous implementation examples demonstrated with 43 video clips
This volume collects papers presented at the international workshop "Hadron-Nuclear Physics 09" held at Osaka, November 1619, 2009. The series of this workshop has provided opportunities to discuss common interests of hadron and nuclear physics. Hadrons and nuclei show up different layers of phenomena governed by the same dynamics dictated by the fundamental law of the strong interaction, Quantum Chromodynamics (QCD). The basic building blocks of matter, quarks and gluons, are confined in hadrons, generating their masses dynamically and breaking chiral symmetry spontaneously. The latter is the origin of the presence of the pion which governs the essential part of the nuclear interaction. Therefore, the common key words are chiral symmetry and pions. This volume contains reports of current achievements in hadron physics including exotic multiquark states, meson production reactions and non-linear dynamics of hadrons, and those in nuclear physics clustering phenomena, exotic neutron rich nuclei and the pions in nuclei. As related subjects, applications to astronuclear physics, including accelerator physics and laser physics are also discussed comprehensively.
This brief is concerned with the fundamentals of corrosion of metallic materials and electrochemistry for better understanding of corrosion phenomena. Corrosion is related to both the environment and material properties, induced by electrochemical reactions at the interface between metallic materials and the environment as in aqueous and gaseous phases. In order to understand corrosion phenomena, knowledge of electrochemistry is thus required, and to investigate the cause of corrosion damage, appropriate electrochemical experiments must be performed. Corrosion scientists should therefore possess knowledge of both electrochemistry and its related experimental techniques. In this book, corrosion phenomena are introduced from the electrochemical aspect. Electrochemical techniques for the study of corrosion are then described with other techniques that can be combined with electrochemistry. Because this brief is characterized as starting with the fundamentals of corrosion and electrochemistry, it is accessible to undergraduate students as well as to graduate students who are beginning corrosion research.
This book presents the most recent description of rubber reinforcement, focusing on the network-like structure formation of nanofiller in the rubber matrix under the presence of bound rubber. The resultant filler network is visualized by electron tomography applied to rubber. In the case of natural rubber, the self-reinforcement effect is uniquely functioning, and new template crystallization is suggested. Here, the crystallites are also believed to arrange themselves in a network-like manner. These results are of great use, particularly for engineers, in designing rubber reinforcement.
Extensive studies of high-Tc cuprate superconductors have stimualted investigations into various transition-metal oxides. Mott transitions in particular provide fascinating problems and new concepts in condensed matter physics. This book is a collection of overviews by well-known, active researchers in this field. It deals with the latest developments, with particular emphasis on the theoretical, spectroscopic, and transport aspects.
In this volume, the authors construct a theory of weights on the log crystalline cohomologies of families of open smooth varieties in characteristic p>0, by defining and constructing four filtered complexes. Fundamental properties of these filtered complexes are proved, in particular the p-adic purity, the functionality of three filtered complexes, the weight-filtered base change formula, the weight-filtered Künneth formula, the weight-filtered Poincaré duality, and the E2-degeneration of p-adic weight spectral sequences. In addition, the authors state some theorems on the weight filtration and the slope filtration on the rigid cohomology of a separated scheme of finite type over a perfect field of characteristic p>0.
This book highlights the latest innovations and applications in robotics, as presented by leading international researchers and engineers at the ROMANSY 2020, the 23rd CISM IFToMM Symposium on Theory and Practice of Robots and Manipulators. The ROMANSY symposium is the first established conference that focuses on robotics theory and research, rather than industrial aspects. Bringing together researchers from a broad range of countries, the symposium is held bi-annually and plays a vital role in the development of the theory and practice of robotics, as well as the mechanical sciences. ROMANSY 2020 marks the 23rd installment in a series that began in 1973. The event was also the first topic-specific conference of the IFToMM, though not exclusively intended for the IFToMM community.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.