Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
Hydrogen fuel cell vehicles (HFCVs) could alleviate the nation's dependence on oil and reduce U.S. emissions of carbon dioxide, the major greenhouse gas. Industry-and government-sponsored research programs have made very impressive technical progress over the past several years, and several companies are currently introducing pre-commercial vehicles and hydrogen fueling stations in limited markets. However, to achieve wide hydrogen vehicle penetration, further technological advances are required for commercial viability, and vehicle manufacturer and hydrogen supplier activities must be coordinated. In particular, costs must be reduced, new automotive manufacturing technologies commercialized, and adequate supplies of hydrogen produced and made available to motorists. These efforts will require considerable resources, especially federal and private sector funding. This book estimates the resources that will be needed to bring HFCVs to the point of competitive self-sustainability in the marketplace. It also estimates the impact on oil consumption and carbon dioxide emissions as HFCVs become a large fraction of the light-duty vehicle fleet.
The problem of deciding which health care technologies to evaluate is urgent. With new technologies proliferating alongside steadily increasing health care costs, it is critical to discriminate among technologies to direct tests and treatments at those who can benefit the most. Given the vast number of clinical problems and technologies to be evaluated, the many months of work required to study just one problem, and the relatively few clinicians with highly developed analytic skills, institutions must set priorities for assessment. This book sets forth criteria and a method that can be used by public agencies such as the Office of Health Technology Assessment (in the U.S. Public Health Service) and by any private organization conducting such work to decide which technologies to assess or reassess.
Today's knowledge economy is driven in large part by the nation's capacity to innovate. One of the defining features of the U.S. economy is a high level of entrepreneurial activity. Entrepreneurs in the United States see opportunities and are willing and able to assume risk to bring new welfare-enhancing, wealth-generating technologies to the market. Yet, although discoveries in areas such as genomics, bioinformatics, and nanotechnology present new opportunities, converting these discoveries into innovations for the market involves substantial challenges. The American capacity for innovation can be strengthened by addressing the challenges faced by entrepreneurs. Public-private partnerships are one means to help entrepreneurs bring new ideas to market. The Small Business Technology Transfer (STTR) and the Small Business Innovation Research (SBIR) program form one of the largest examples of U.S. public-private partnerships. In the SBIR Reauthorization Act of 2000, Congress tasked the National Research Council with undertaking a comprehensive study of how the SBIR program has stimulated technological innovation and used small businesses to meet federal research and development needs and with recommending further improvements to the program. When reauthorizing the SBIR and STTR programs in 2011, Congress expanded the study mandate to include a review of the STTR program. This report builds on the methodology and outcomes from the previous review of SBIR and assesses the STTR program.
The SBIR program allocates 2.5 percent of 11 federal agencies' extramural R&D budgets to fund R&D projects by small businesses, providing approximately $2 billion annually in competitive awards. At the request of Congress the National Academies conducted a comprehensive study of how the SBIR program has stimulated technological innovation and used small businesses to meet federal research and development needs. Drawing substantially on new data collection, this book examines the SBIR program at the National Institutes of Health and makes recommendations for improvements. Separate reports will assess the SBIR program at DOD, NSF, DOE, and NASA, respectively, along with a comprehensive report on the entire program.
The Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs provide federal research and development funding to small businesses. In 2008, the National Research Council completed a comprehensive assessment of the SBIR and STTR programs. The first-round study found that the programs were "sound in concept and effective in practice." Building on the outcomes from the Phase I study, this second phase examines both topics of general policy interest that emerged during the first phase and topics of specific interest to individual agencies, and provides a second snapshot to measure the program's progress against its legislative goals.
The security of the U.S. commercial aviation system has been a growing concern since the 1970's when the hijacking of aircraft became a serious problem. Over that period, federal aviation officials have been searching for more effective ways for non-invasive screening of passengers, luggage, and cargo to detect concealed explosives and weapons. To assist in this effort, the Transportation Security Administration (TSA) asked the NRC for a study of emerging screening technologies. This report-the third of four-focuses on currently maturing millimeter-wavelength/terahertz imaging and spectroscopy technologies that offer promise in meeting aviation security requirements. The report provides a description of the basic operation of these imaging systems, an assessment of their component technologies, an analysis of various system concepts, and an implementation strategy for deployment of millimeter-wavelength/terahertz technology screening systems.
Non-lethal weapons (NLWs) are designed to minimize fatalities and other undesired collateral damage when used. Events of the last few years including the attack on the USS Cole have raised ideas about the role NLWs can play in enhancing support to naval forces. In particular to what extent and in what areas should Department of the Navy (DoN) -sponsored science and technology (S&T) provide a research base for developing NLW capabilities? To assist with this question and to evaluate the current NLWs program, the Joint Non-Lethal Weapons Directorate (JNLWD) and the Office of Naval Research (ONR) requested the National Research Council perform an assessment of NLWs science and technology. The report presents the results of that assessment. It discusses promising NLW S&T areas, development accomplishments and concerns about NLW, and series of recommendations about future NLW development and application.
Wind-driven power systems represent a renewable energy technology. Arrays of interconnected wind turbines can convert power carried by the wind into electricity. This book defines a research and development agenda for the U.S. Department of Energy's wind energy program in hopes of improving the performance of this emerging technology.
Wind-driven power systems represent a renewable energy technology. Arrays of interconnected wind turbines can convert power carried by the wind into electricity. This book defines a research and development agenda for the U.S. Department of Energy's wind energy program in hopes of improving the performance of this emerging technology.
This report assesses the operational performance of explosives-detection equipment and hardened unit-loading devices (HULDs) in airports and compares their operational performance to their laboratory performance, with a focus on improving aviation security.
The National Institute of Standards and Technology (NIST) Measurements and Standards Laboratories (MSL) provide technical leadership for the nation's measurement and standards infrastructure and assure the availability of essential reference data and measurement capabilities. At NIST's request the National Research Council (NRC) carries out a biennial assessment of the seven MSL. The assessment focuses on each laboratory's technical quality and merit; and effectiveness. It also examines the relevance of the NIST programs and how well laboratory facilities, equipment, and personnel are able to fulfill the MSL mission. This report presents an overall assessment of the MSL followed by detailed assessments of each of the seven laboratories.
The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.
At the request of the National Institute of Standards and Technology (NIST), the National Academies of Sciences, Engineering, and Medicine has, since 1959, annually assembled panels of experts from academia, industry, medicine, and other scientific and engineering communities to assess the quality and effectiveness of the NIST measurements and standards laboratories, of which there are now seven, as well as the adequacy of the laboratories' resources. An Assessment of the National Institute of Standards and Technology Center for Nanoscale Science and Technology: Fiscal Year 2016 assesses the scientific and technical work performed by the NIST Center for Nanoscale Science and Technology and the accomplisments, challenges, and opportunities for improvement.
This book presents a scientific assessment of free-electron-laser technology for naval applications. The charge from the Office of Naval Research was to assess whether the desired performance capabilities are achievable or whether fundamental limitations will prevent them from being realized. The present study identifies the highest-priority scientific and technical issues that must be resolved along the development path to achieve a megawatt-class free-electron laser. In accordance with the charge, the committee considered (and briefly describes) trade-offs between free-electron lasers and other types of lasers and weapon systems to show the advantages free-electron lasers offer over other types of systems for naval applications as well as their drawbacks. The primary advantages of free-electron lasers are associated with their energy delivery at the speed of light, selectable wavelength, and all-electric nature, while the trade-offs for free-electron lasers are their size, complexity, and relative robustness. Also, Despite the significant technical progress made in the development of high-average-power free-electron lasers, difficult technical challenges remain to be addressed in order to advance from present capability to megawatt-class power levels.
The Small Business Innovation Research (SBIR) program is one of the largest examples of U.S. public-private partnerships. Founded in 1982, SBIR was designed to encourage small business to develop new processes and products and to provide quality research in support of the many missions of the U.S. government, including health, energy, the environment, and national defense. In response to a request from the U.S. Congress, the National Research Council assessed SBIR as administered by the five federal agencies that together make up 96 percent of program expenditures. This book, one of six in the series, reports on the SBIR program at the National Aeronautics and Space Administration, and finds that the program is making significant progress in achieving the Congressional goals for the program. Keeping in mind NASA's unique mission and the recent significant changes to the program, the committee found the SBIR program to be sound in concept and effective in practice at NASA.. The book recommends programmatic changes that should make the SBIR program even more effective in achieving its legislative goals.
The Small Business Innovation Research (SBIR) program is one of the largest examples of U.S. public-private partnerships. Founded in 1982, SBIR was designed to encourage small business to develop new processes and products and to provide quality research in support of the many missions of the U.S. government, including health, energy, the environment, and national defense. In response to a request from the U.S. Congress, the National Research Council assessed SBIR as administered by the five federal agencies that together make up 96 percent of program expenditures. This book, one of six in the series, reports on the SBIR program at the National Science Foundation. The study finds that the SBIR program is sound in concept and effective in practice, but that it can also be improved. Currently, the program is delivering results that meet most of the congressional objectives, including stimulating technological innovation, increasing private-sector commercialization of innovations, using small businesses to meet federal research and development needs, and fostering participation by minority and disadvantaged persons. The book suggests ways in which the program can improve operations, continue to increase private-sector commercialization, and improve participation by women and minorities.
The SBIR program allocates 2.5 percent of 11 federal agencies' extramural R&D budgets to fund R&D projects by small businesses, providing approximately $2 billion annually in competitive awards. At the request of Congress, the National Academies conducted a comprehensive study of how the SBIR program has stimulated technological innovation and used small businesses to meet federal research and development needs. Drawing substantially on new data collection, this report provides a comprehensive overview of the SBIR program at the five agencies representing 96 percent of program expenditure-DOD, NIH, NSF, DOE, and NASA-and makes recommendations on improvements to the program. Separate books on each agency will also be issued.
The nation has compelling reasons to reduce its consumption of oil and emissions of carbon dioxide. Plug-in hybrid electric vehicles (PHEVs) promise to contribute to both goals by allowing some miles to be driven on electricity drawn from the grid, with an internal combustion engine that kicks in when the batteries are discharged. However, while battery technology has made great strides in recent years, batteries are still very expensive. Transitions to Alternative Transportation Technologies-Plug-in Hybrid Electric Vehicles builds on a 2008 National Research Council report on hydrogen fuel cell vehicles. The present volume reviews the current and projected technology status of PHEVs; considers the factors that will affect how rapidly PHEVs could enter the marketplace, including the interface with the electric transmission and distribution system; determines a maximum practical penetration rate for PHEVs consistent with the time frame and factors considered in the 2008 Hydrogen report; and incorporates PHEVs into the models used in the hydrogen study to estimate the costs and impacts on petroleum consumption and carbon dioxide emissions.
The Small Business Administration issued a policy directive in 2002, the effect of which has been to exclude innovative small firms in which venture capital firms have a controlling interest from the SBIR program. This book seeks to illuminate the consequences of the SBA ruling excluding majority-owned venture capital firms from participation in SBIR projects. This book is part of the National Research Council's study to evaluate the SBIR program's quality of research and value to the missions of five government agencies. The other books in the series include: An Assessment of the SBIR Program (2008) An Assessment of the SBIR Program at the National Science Foundation (2007) An Assessment of the Small Business Innovation Research Program at the National Institutes of Health (2009) An Assessment of Small Business Innovation Research Program at the Department of Energy (2008) An Assessment of the Small Business Innovation Research Program at the National Aeronautics and Space Administration (2009) An Assessment of the Small Business Innovation Research Program at the Department of Defense (2009)
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.