This book provides a common framework for mobility management that considers the theoretical and practical aspects of systems optimization for mobile networks. In this book, the authors show how an optimized system of mobility management can improve the quality of service in existing forms of mobile communication. Furthermore, they provide a theoretical approach to mobility management, as well as developing the model for systems optimization, including practical case studies using network layer and mobility layer protocols in different deployment scenarios. The authors also address the different ways in which the specific mobility protocol can be developed, taking into account numerous factors including security, configuration, authentication, quality of service, and movement patterns of the mobiles. Key Features: Defines and discusses a common set of optimization methodologies and their application to all mobility protocols for both IPv4 and IPv6 networks Applies these technologies in the context of various layers: MAC layer, network layer, transport layer and application layer covering 802.11, LTE, WiMax, CDMA networks and protocols such as SIP, MIP, HIP, VoIP, and many more Provides a thorough analysis of the required steps during a mobility event such as discovery, network selection, configuration, authentication, security association, encryption, binding update, and media direction Includes models and tables illustrating the analysis of mobility management as well as architecture of sample wireless and mobility test beds built by the authors, involving inter-domain and intra-domain mobility scenarios This book is an excellent resource forprofessionals and systems architects in charge of designing wireless networks for commercial (3G/4G), LTE, IMS, military and Ad Hoc environment. It will be useful deployment guide for the architects wireless service providers. Graduate students, researchers in industry and academia, and systems engineers will also find this book of interest.
The engineering of materials with advanced features is driving the research towards the design of innovative materials with high performances. New materials often deliver the best solution for structural applications, precisely contributing towards the finest combination of mechanical properties and low weight. The mimicking of nature's principles lead to a new class of structural materials including biomimetic composites, natural hierarchical materials and smart materials. Meanwhile, computational modeling approaches are the valuable tools complementary to experimental techniques and provide significant information at the microscopic level and explain the properties of materials and their very existence. The modeling also provides useful insights to possible strategies to design and fabricate materials with novel and improved properties. The book brings together these two fascinating areas and offers a comprehensive view of cutting-edge research on materials interfaces and technologies the engineering materials. The topics covered in this book are divided into 2 parts: Engineering of Materials, Characterizations & Applications and Computational Modeling of Materials. The chapters include the following: Mechanical and resistance behavior of structural glass beams Nanocrystalline metal carbides - microstructure characterization SMA-reinforced laminated glass panel Sustainable sugarcane bagasse cellulose for papermaking Electrospun scaffolds for cardiac tissue engineering Bio-inspired composites Density functional theory for studying extended systems First principles based approaches for modeling materials Computer aided materials design Computational materials for stochastic electromagnets Computational methods for thermal analysis of heterogeneous materials Modelling of resistive bilayer structures Modeling tunneling of superluminal photons through Brain Microtubules Computer aided surgical workflow modeling Displaced multiwavelets and splitting algorithms
Because of their unique properties (size, shape, and surface functions), functional materials are gaining significant attention in the areas of energy conversion and storage, sensing, electronics, photonics, and biomedicine. Within the chapters of this book written by well-known researchers, one will find the range of methods that have been developed for preparation and functionalization of organic, inorganic and hybrid structures which are the necessary building blocks for the architecture of various advanced functional materials. The book discusses these innovative methodologies and research strategies, as well as provides a comprehensive and detailed overview of the cutting-edge research on the processing, properties and technology developments of advanced functional materials and their applications. Specifically, Advanced Functional Materials: Compiles the objectives related to functional materials and provides detailed reviews of fundamentals, novel production methods, and frontiers of functional materials, including metalic oxides, conducting polymers, carbon nanotubes, discotic liquid crystalline dimers, calixarenes, crown ethers, chitosan and graphene. Discusses the production and characterization of these materials, while mentioning recent approaches developed as well as their uses and applications for sensitive chemiresistors, optical and electronic materials, solar hydrogen generation, supercapacitors, display and organic light-emitting diodes, functional adsorbents, and antimicrobial and biocompatible layer formation. This volume in the Advanced Materials Book Series includes twelve chapters divided into two main areas: Part 1: Functional Metal Oxides: Architecture, Design and Applications and Part 2: Multifunctional Hybrid Materials: Fundamentals and Frontiers
Interdisciplinary Engineering Sciences introduces and emphasizes the importance of the interdisciplinary nature of education and research from a materials science perspective. This approach is aimed to promote understanding of the physical, chemical, biological and engineering aspects of any materials science problem. Contents are prepared to maintain the strong background of fundamental engineering disciplines while integrating them with the disciplines of natural science. It presents key concepts and includes case studies on biomedical materials and renewable energy. Aimed at senior undergraduate and graduate students in materials science and other streams of engineering, this book Explores interdisciplinary research aspects in a coherent manner for materials science researchers Presents key concepts of engineering sciences as relevant for materials science in terms of fundamentals and applications Discusses engineering mechanics, biological and physical sciences Includes relevant case studies and examples
India’s forest area has come down below one fifth of total geographical area, due to indiscriminate alienation of forest land for non-forestry purposes and deforestation leading to rapid loss in biodiversity and forest natural resources. An outdated Indian Forest Act, 1927, the most important legal instrument for forest management and administration, with a colonial mindset, influenced by Locke and monetization of forest resources for financial profiteering by the British colonial administration, has been found to be inadequate for conservation of valuable forest environment and resources and alienated local stakeholders in natural resource management. Higher judiciary has started intervening by issuing several judgements and orders, keeping in tune recent developments in the field of international environment law, to save forest land and forest resources, in absence of a strong legal frame work. Global initiatives for conservation of natural resources and mitigation of damaging effects of Climate Change, Sustainable Development Goals etc. have catalysed swift action on part of the government and other stake holders towards achieving conservation goals. A paradigm shift in the system for forest conservation and management, supported by a new law, based on sound scientific forestry, such as landscape level management etc. is the need of the hour.
This book [earlier titled as Electromagnetism: Theory and Applications which is bifurcated into two volumes: Electromagnetism: Theory and Electromagnetism: Applications (Magnetic Diffusion and Electromagnetic Waves) has been updated to cover some additional aspects of theory and nearly all modern applications. The semi-historical approach is unchanged, but further historical comments have been introduced at various places in the book to give a better insight into the development of the subject as well as to make the study more interesting and palatable to the students. Key Features • Physical explanations of different types of currents • Concepts of complex permittivity and complex permeability; and anisotropic behaviour of constitute parameters in different media and different conditions • Vector co-ordinate system transformation equations • Halbach magnets and the theory of one-sided flux • Discussion on physical aspects of demagnetization curve of B-H loop for ferromagnetic materials • Extrapolation of Frohlich-Kennely equation used for the design and analysis of permanent magnet applications • Physical aspects of Faraday’s law of electromagnetic induction (i.e., Fourth Maxwell’s field equation) through the approach of special relativity • Extrapolation and elaboration of the concept of electromechanical energy conversion to both magnetic as well as electric field systems Appendices contain in-depth analysis of self-inductance and non-conservative fields (Appendix 6), proof regarding the boundary conditions (Appendix 8), theory of bicylindrical co-ordinate system to provide the physical basis of the circuit approach to the cylindrical transmission line systems (Appendix 10), and properties of useful functions like Bessel and Legendre functions (Appendix 9). The book is designed to serve as a core text for students of electrical engineering. Besides, it will be useful to postgraduate physics students as well as research engineers and design and development engineers in industries.
This book is a sequel to Electromagnetism: Theory (Volume I). It has been updated to cover some additional aspects of theory and nearly all modern applications. The semi-historical approach is unchanged, but further historical comments have been introduced at various places in the book to give a better insight into the development of the subject as well as to make the study more interesting and palatable to the students. • Emphasis on practical aspects of wave guidance and radiation • Sections on analysis of cylindrical dielectric waveguide (e.g. of optical fibres) in Chapters 18 and 22 • Tensor formulation of Maxwell’s Stresses • Extension of Principle of Duality to time varying field problems as well as to non electrical systems • Extrapolation of the method of images from partially embedded conduction current elements to discontinuous current elements with displacement currents in antennae problems • Explanation of the physical basis of the mechanism of electromagnetic radiation • Analysis of wave polarization including complete and partial polarization • Effects of finite geometrical dimensions of the conducting media on the skin-effect phenomenon • Types of apertures in receiving antennae The book is designed to serve as a core text for students of electrical engineering. Besides, it will be useful to postgraduate physics students as well as research engineers and design and development engineers in industries.
Graphene Materials: Fundamentals and EmergingApplications brings together innovative methodologies withresearch and development strategies to provide a detailedstate-of-the-art overview of the processing, properties, andtechnology developments of graphene materials and theirwide-ranging applications. The applications areas covered arebiosensing, energy storage, environmental monitoring, andhealth. The book discusses the various methods that have been developedfor the preparation and functionalization of single-layeredgraphene nanosheets. These form the essential building blocks forthe bottom-up architecture of various graphene materials becausethey possess unique physico-chemical properties such as largesurface areas, good conductivity and mechanical strength, highthermal stability and desirable flexibility. The electronicbehavior in graphene, such as dirac fermions obtained due to theinteraction with the ions of the lattice, has led to the discoveryof novel miracles like Klein tunneling in carbon-based solid statesystems and the so-called half-integer quantum Hall effect. Thecombination of these properties makes graphene a highly desirablematerial for applications. In particular, Graphene Materials: Fundamentals and EmergingApplications has chapters covering: • Graphene and related two-dimensional nanomaterials • Surface functionalization of graphene • Functional three-dimensional graphene networks • Covalent graphene-polymer nanocomposites • Magnesium matrix composites reinforced with graphenenanoplatelets • Graphene derivatives for energy storage • Graphene nanocomposite for high performance supercapacitors • Graphene nanocomposite-based bulk hetro-junction solar cells • Graphene bimetallic nanocatalysts foam for energy storage andbiosensing • Graphene nanocomposites-based for electrochemical sensors • Graphene electrodes for health and environmental monitoring
Maharashtra - The land of World Heritage Sites of Ajanta and Ellora in the historic city of Aurangabad, the matchless forts of Sindhdurg, and Pratapgad, the pilgrimage sites of Shirdi, Nasik, and Trimbakeshvar, amazing beauty of hill resorts of Mahabaleshwar and Lonavala, the cultural capital of Kolhapur, the virgin beaches of South Konkan, and the energetic cities of Mumbai and Pune are some of the many fascinating facets of the state. Book Contents:Introduction Maharashtra The book offers interesting insight about Maharashtra's Culture, music, dance, art and craft, fairs and festivals, Adventure and sports, wildlife and flora. The destinations are signposted with details of accessibility and connectivity, Tourist attractions,Local Directory, Guide maps, Popular and little known places of interest. The book has Listing of Hotels, Popular places of dining out, Restaurants Shopping areas, Details on tourist offices, Travel services providers,Travel tips.
This book presents a complete set of studies of alluvial fan sediments in southern Iran from the point of view of sedimentology, sedimentary geochemistry, tectonics, economic geology, groundwater, geomorphology, hazards and telemetry. In addition, the book focuses on advanced topics and theory, which practically serves as a model for the study of this type of sediment around the world. Alluvial fans are an important and fundamental factor in many sciences such as geology, environmental science, natural hazards, groundwater science, agriculture and many other related sciences. Lack of accurate knowledge of their constituent sediments has always been an important problem for experts in many science disciplines. From the economic point of view, the identification of alluvial fan deposits is of particular importance. For example, alluvial deposits are the centre of groundwater accumulation, and most groundwater reservoirs within the sedimentary basin are fed by water from alluvial deposits. Most of the gold production in South Africa has been formed as placer deposits in ancient alluvial fans. In addition, a large amount of uranium placer deposits is extracted from old alluvial fans in sedimentary basins in South Africa. This book serves as an ideal guide for experts in earth and environmental sciences and hydrology.
This book provides a common framework for mobility management that considers the theoretical and practical aspects of systems optimization for mobile networks. In this book, the authors show how an optimized system of mobility management can improve the quality of service in existing forms of mobile communication. Furthermore, they provide a theoretical approach to mobility management, as well as developing the model for systems optimization, including practical case studies using network layer and mobility layer protocols in different deployment scenarios. The authors also address the different ways in which the specific mobility protocol can be developed, taking into account numerous factors including security, configuration, authentication, quality of service, and movement patterns of the mobiles. Key Features: Defines and discusses a common set of optimization methodologies and their application to all mobility protocols for both IPv4 and IPv6 networks Applies these technologies in the context of various layers: MAC layer, network layer, transport layer and application layer covering 802.11, LTE, WiMax, CDMA networks and protocols such as SIP, MIP, HIP, VoIP, and many more Provides a thorough analysis of the required steps during a mobility event such as discovery, network selection, configuration, authentication, security association, encryption, binding update, and media direction Includes models and tables illustrating the analysis of mobility management as well as architecture of sample wireless and mobility test beds built by the authors, involving inter-domain and intra-domain mobility scenarios This book is an excellent resource forprofessionals and systems architects in charge of designing wireless networks for commercial (3G/4G), LTE, IMS, military and Ad Hoc environment. It will be useful deployment guide for the architects wireless service providers. Graduate students, researchers in industry and academia, and systems engineers will also find this book of interest.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.