This work provides the current theory and observations behind the cosmological phenomenon of dark energy. The approach is comprehensive with rigorous mathematical theory and relevant astronomical observations discussed in context. The book treats the background and history starting with the new-found importance of Einstein’s cosmological constant (proposed long ago) in dark energy formulation, as well as the frontiers of dark energy. The authors do not presuppose advanced knowledge of astronomy, and basic mathematical concepts used in modern cosmology are presented in a simple, but rigorous way. All this makes the book useful for both astronomers and physicists, and also for university students of physical sciences.
This book presents a high-level study of cosmology with interacting dark energy and no additional fields. It is known that dark energy is not necessarily uniform when other sources of gravity are present: interaction with matter leads to its variation in space and time. The present text studies the cosmological implications of this circumstance by analyzing cosmological models in which the dark energy density interacts with matter and thus changes with the time. The book also includes a translation of a seminal article about the remarkable life and work of E.B. Gliner, the first person to suggest the concept of dark energy in 1965.
A NATO Advanced Study Institute (ASI) on High-Brightness Accelerators was held at the Atholl Palace Hotel, Pitlochry, Perthshire, Scotland, from July 13 through July 25, 1986. This publication is the Proceedings of the Institute. This ASI emphasized the basic physics and engineering of the rela tively new and fast-emerging field of high-brightness particle accelera tors. These machines are high- to very-high-current (amperes to hundreds of kiloamperes), modest-voltage (megavolt to tens of megavolts) devices, and as such are opposed to those historically used for high-energy physics studies (i.e., gigavolt and higher energies and rather low currents). The primary focus of the Institute was on the physics of the accelerator and the beam, including the dynamics, equilibria, and insta bilities of high-current beams near the space-charge limit; accelerator engineering techniques; and the applications of high-brightness beams in areas such as free-electron lasers, synchrotron-radiation sources, food processing, and heavy- and light-ion fusion. The Institute concentrated on bringing together several diverse but related communities which, we hope, benefited from this opportunity to interact: the North American activity in machine technology, engineer ing, and diagnostics with the strong European theoretical community; the basic beam physicists with the engineering technologists.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.