Sir Isaac Newton famously said, regarding his discoveries, "If I have seen further it is by standing upon the shoulders of giants." The Evolving Universe and the Origin of Life describes, complete with fascinating biographical details of the thinkers involved, the ascent to the metaphorical shoulders accomplished by the greatest minds in history. For the first time, a single book can take the reader on a journey through the history of the universe as interpreted by the expanding body of knowledge of humankind. From subatomic particles to the protein chains that form life, and expanding in scale to the entire universe, this book covers the science that explains how we came to be. The Evolving Universe and the Origin of Life contains a great breadth of knowledge, from astronomy to physics, from chemistry to biology. It includes over 350 figures that enhance the comprehension of concepts both basic and advanced, and is a non-technical, easy-to-read text at an introductory college level that is ideal for anyone interested in science as well as its history.
This book derives and analyzes all solutions to the Kepler problem with dark energy (DE), presenting significant results such as: (a) all radial infinite motions obey Hubble’s law at large times; (b) all orbital infinite motions are asymptotically radial and obey Hubble’s law; (c) infinite orbital motions strongly dominate the finite ones. This clearly shows the effect of repulsive DE: In the classical Kepler problem, all orbital motions are finite for negative energies and infinite in the opposite case. Another DE effect is spatial localization of bounded orbits: mostly, they are within the equilibrium sphere, where the attractive Newtonian force outbalances the repulsive force of DE. This problem is of particular current interest due to recent studies of the local flows of galaxies showing domination of DE in their dynamics; the book discusses this observation in detail.
A NATO Advanced Study Institute (ASI) on High-Brightness Accelerators was held at the Atholl Palace Hotel, Pitlochry, Perthshire, Scotland, from July 13 through July 25, 1986. This publication is the Proceedings of the Institute. This ASI emphasized the basic physics and engineering of the rela tively new and fast-emerging field of high-brightness particle accelera tors. These machines are high- to very-high-current (amperes to hundreds of kiloamperes), modest-voltage (megavolt to tens of megavolts) devices, and as such are opposed to those historically used for high-energy physics studies (i.e., gigavolt and higher energies and rather low currents). The primary focus of the Institute was on the physics of the accelerator and the beam, including the dynamics, equilibria, and insta bilities of high-current beams near the space-charge limit; accelerator engineering techniques; and the applications of high-brightness beams in areas such as free-electron lasers, synchrotron-radiation sources, food processing, and heavy- and light-ion fusion. The Institute concentrated on bringing together several diverse but related communities which, we hope, benefited from this opportunity to interact: the North American activity in machine technology, engineer ing, and diagnostics with the strong European theoretical community; the basic beam physicists with the engineering technologists.
This work provides the current theory and observations behind the cosmological phenomenon of dark energy. The approach is comprehensive with rigorous mathematical theory and relevant astronomical observations discussed in context. The book treats the background and history starting with the new-found importance of Einstein’s cosmological constant (proposed long ago) in dark energy formulation, as well as the frontiers of dark energy. The authors do not presuppose advanced knowledge of astronomy, and basic mathematical concepts used in modern cosmology are presented in a simple, but rigorous way. All this makes the book useful for both astronomers and physicists, and also for university students of physical sciences.
This book presents a high-level study of cosmology with interacting dark energy and no additional fields. It is known that dark energy is not necessarily uniform when other sources of gravity are present: interaction with matter leads to its variation in space and time. The present text studies the cosmological implications of this circumstance by analyzing cosmological models in which the dark energy density interacts with matter and thus changes with the time. The book also includes a translation of a seminal article about the remarkable life and work of E.B. Gliner, the first person to suggest the concept of dark energy in 1965.
In a work that will interest researchers in ecology, genetics, botany, entomology, and parasitology, Warren Abrahamson and Arthur Weis present the results of more than twenty-five years of studying plant-insect interactions. Their study centers on the ecology and evolution of interactions among a host plant, the parasitic insect that attacks it, and the suite of insects and birds that are the natural enemies of the parasite. Because this system provides a model that can be subjected to experimental manipulations, it has allowed the authors to address specific theories and concepts that have guided biological research for more than two decades and to engage general problems in evolutionary biology. The specific subjects of research are the host plant goldenrod (Solidago), the parasitic insect Eurosta solidaginis (Diptera: Tephritidae) that induces a gall on the plant stem, and a number of natural enemies of the gallfly. By presenting their detailed empirical studies of the Solidago-Eurosta natural enemy system, the authors demonstrate the complexities of specialized enemy-victim interactions and, thereby, the complex interactive relationships among species more broadly. By utilizing a diverse array of field, laboratory, behavioral, genetic, chemical, and statistical techniques, Abrahamson and Weis present the most thorough study to date of a single system of interacting species. Their interest in the evolutionary ecology of plant-insect interactions leads them to insights on the evolution of species interactions in general. This major work will interest anyone involved in studying the ways in which interdependent species interact.
In this sequel to his instant classic Improve Your Chess Pattern Recognition, a highly original take on practical middlegame instruction, Arthur van de Oudeweetering presents players of almost every level with a fresh supply of essential, yet easy-to-remember building blocks for their chess knowledge. Pattern recognition is one of the most important mechanisms of chess improvement. It helps you to quickly grasp the essence of a position on the board and find the most promising continuation. In short, well-defined and practical chapters, experienced chess trainer Van de Oudeweetering presents hundreds of examples of middlegame themes. To test your understanding he provides an abundance of exercises. After working with this book, an increasing number of positions, pawn structures and piece placements will automatically activate your chess knowledge. As a result, you will find the right move more often and more quickly!
One of the most effective ways to improve your chess Pattern recognition is one of the most important mechanisms of chess improvement. It helps you to quickly grasp the essence of a position on the board and find the most promising continuation. In his instant classics Improve Your Chess Pattern Recognition (2014) and Train Your Chess Pattern Recognition (2016) International Master Arthur van de Oudeweetering presented building blocks for experienced club players which often involved notable exceptions to a set of fundamental guidelines. To appreciate these books you had to know these basic principles. Chess Pattern Recognition for Beginners provides this knowledge. It teaches the most important patterns you need to know in order to develop and mobilize your pieces, manoeuvre your pawns into positions of strength, put pressure on your opponent, attack the enemy king, and execute standard sacrifices to get the initiative. Ambitious beginners and post-beginners who study this book will soon experience a significant improvement in their results.
An introduction to the principal ideas and results of the contemporary theory of approximate integration, this volume approaches its subject from the viewpoint of functional analysis. The 3-part treatment begins with concepts and theorems encountered in the theory of quadrature and then explores the problem of calculation of definite integrals and methods for the calculation of indefinite integral. 1962 edition.
This work provides the current theory and observations behind the cosmological phenomenon of dark energy. The approach is comprehensive with rigorous mathematical theory and relevant astronomical observations discussed in context. The book treats the background and history starting with the new-found importance of Einstein’s cosmological constant (proposed long ago) in dark energy formulation, as well as the frontiers of dark energy. The authors do not presuppose advanced knowledge of astronomy, and basic mathematical concepts used in modern cosmology are presented in a simple, but rigorous way. All this makes the book useful for both astronomers and physicists, and also for university students of physical sciences.
This book presents a high-level study of cosmology with interacting dark energy and no additional fields. It is known that dark energy is not necessarily uniform when other sources of gravity are present: interaction with matter leads to its variation in space and time. The present text studies the cosmological implications of this circumstance by analyzing cosmological models in which the dark energy density interacts with matter and thus changes with the time. The book also includes a translation of a seminal article about the remarkable life and work of E.B. Gliner, the first person to suggest the concept of dark energy in 1965.
This book derives and analyzes all solutions to the Kepler problem with dark energy (DE), presenting significant results such as: (a) all radial infinite motions obey Hubble’s law at large times; (b) all orbital infinite motions are asymptotically radial and obey Hubble’s law; (c) infinite orbital motions strongly dominate the finite ones. This clearly shows the effect of repulsive DE: In the classical Kepler problem, all orbital motions are finite for negative energies and infinite in the opposite case. Another DE effect is spatial localization of bounded orbits: mostly, they are within the equilibrium sphere, where the attractive Newtonian force outbalances the repulsive force of DE. This problem is of particular current interest due to recent studies of the local flows of galaxies showing domination of DE in their dynamics; the book discusses this observation in detail.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.