This fully revised second edition focuses on physical phenomena and observations in turbulence, and is focused on reversing misconceptions and ill-defined concepts. New topics include ergodicity, Eulerian versus Lagrangian descriptions, theory validation, and anomalous scaling.
Now in its second edition, this book clearly, concisely and comprehensively outlines the essence of turbulence. In view of the absence of a theory based on first principles and adequate tools to handle the problem, the “essence” of turbulence, i.e. what turbulence really is from a fundamental point of view, is understood empirically through observations from nature, laboratories and direct numerical simulations rather than explained by means of conventional formalistic aspects, models, etc., resulting in pertinent issues being described at a highly theoretical level in spite of the mentioned lack of theory. As such, the book highlights and critically reexamines fundamental issues, especially those of paradigmatic nature, related to conceptual and problematic aspects, key misconceptions and unresolved matters, and discusses why the problem is so difficult. As in the previous edition, the focus on fundamental issues is also a consequence of the view that without corresponding advances in fundamental aspects there is little chance of progress in any applications. More generally there is a desperate need for physical fundamentals of a great variety of processes in nature and technology in which turbulence plays a central role. Turbulence is omnipresent throughout the natural sciences and technology, but despite the vast sea of information available the book retains its brevity without oversimplifications, making it of interest to a broad audience.
This fully revised second edition focuses on physical phenomena and observations in turbulence, and is focused on reversing misconceptions and ill-defined concepts. New topics include ergodicity, Eulerian versus Lagrangian descriptions, theory validation, and anomalous scaling.
This book is an informal introduction to the turbulence of fluids. The emphasis is placed on turbulence as a physical phenomenon. It addresses the unresolved issues, misconceptions, controversies, and major problems of the turbulence of fluids rather than the conventional formalistic elements and models. Little use is made of complicated formalisms; instead the emphasis is placed on an essentially informal qualitative form. The scope of the book is focused on the purely basic aspects of the turbulent flows of incompressible fluids. This book will certainly be of interest and use to graduate students as well as scientists active in fields where the turbulence of fluids is of importance. The book is intentionally written to appeal to a broad readership with the aim of making the turbulence of fluids interesting and comprehensible to the interested engineer.
Now in its second edition, this book clearly, concisely and comprehensively outlines the essence of turbulence. In view of the absence of a theory based on first principles and adequate tools to handle the problem, the “essence” of turbulence, i.e. what turbulence really is from a fundamental point of view, is understood empirically through observations from nature, laboratories and direct numerical simulations rather than explained by means of conventional formalistic aspects, models, etc., resulting in pertinent issues being described at a highly theoretical level in spite of the mentioned lack of theory. As such, the book highlights and critically reexamines fundamental issues, especially those of paradigmatic nature, related to conceptual and problematic aspects, key misconceptions and unresolved matters, and discusses why the problem is so difficult. As in the previous edition, the focus on fundamental issues is also a consequence of the view that without corresponding advances in fundamental aspects there is little chance of progress in any applications. More generally there is a desperate need for physical fundamentals of a great variety of processes in nature and technology in which turbulence plays a central role. Turbulence is omnipresent throughout the natural sciences and technology, but despite the vast sea of information available the book retains its brevity without oversimplifications, making it of interest to a broad audience.
A collection of contributions on a variety of mathematical, physical and engineering subjects related to turbulence. Topics include mathematical issues, control and related problems, observational aspects, two- and quasi-two-dimensional flows, basic aspects of turbulence modeling, statistical issues and passive scalars.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.