The book deals with bilinear forms in real random vectors and their generalizations as well as zonal polynomials and their applications in handling generalized quadratic and bilinear forms. The book is mostly self-contained. It starts from basic principles and brings the readers to the current research level in these areas. It is developed with detailed proofs and illustrative examples for easy readability and self-study. Several exercises are proposed at the end of the chapters. The complicated topic of zonal polynomials is explained in detail in this book. The book concentrates on the theoretical developments in all the topics covered. Some applications are pointed out but no detailed application to any particular field is attempted. This book can be used as a textbook for a one-semester graduate course on quadratic and bilinear forms and/or on zonal polynomials. It is hoped that this book will be a valuable reference source for graduate students and research workers in the areas of mathematical statistics, quadratic and bilinear forms and their generalizations, zonal polynomials, invariant polynomials and related topics, and will benefit statisticians, mathematicians and other theoretical and applied scientists who use any of the above topics in their areas. Chapter 1 gives the preliminaries needed in later chapters, including some Jacobians of matrix transformations. Chapter 2 is devoted to bilinear forms in Gaussian real ran dom vectors, their properties, and techniques specially developed to deal with bilinear forms where the standard methods for handling quadratic forms become complicated.
This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward. This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout.
Fractional calculus in terms of mathematics and statistics and its applications to problems in natural sciences is NOT yet part of university teaching curricula. This book is one attempt to provide an approach to include topics of fractional calculus into university curricula. Additionally the material is useful for people who do research work in the areas of special functions, fractional calculus, applications of fractional calculus, and mathematical statistics.
This book offers an introduction to concepts of probability theory, probability distributions relevant in the applied sciences, as well as basics of sampling distributions, estimation and hypothesis testing. As a companion for classes for engineers and scientists, the book also covers applied topics such as model building and experiment design. Contents Random phenomena Probability Random variables Expected values Commonly used discrete distributions Commonly used density functions Joint distributions Some multivariate distributions Collection of random variables Sampling distributions Estimation Interval estimation Tests of statistical hypotheses Model building and regression Design of experiments and analysis of variance Questions and answers
In order not to intimidate students by a too abstract approach, this textbook on linear algebra is written to be easy to digest by non-mathematicians. It introduces the concepts of vector spaces and mappings between them without dwelling on statements such as theorems and proofs too much. It is also designed to be self-contained, so no other material is required for an understanding of the topics covered. As the basis for courses on space and atmospheric science, remote sensing, geographic information systems, meteorology, climate and satellite communications at UN-affiliated regional centers, various applications of the formal theory are discussed as well. These include differential equations, statistics, optimization and some engineering-motivated problems in physics. Contents Vectors Matrices Determinants Eigenvalues and eigenvectors Some applications of matrices and determinants Matrix series and additional properties of matrices
This book concentrates on the topic of evaluation of Jacobians in some specific linear as well as nonlinear matrix transformations, in the real and complex cases, which are widely applied in the statistical, physical, engineering, biological and social sciences. It aims to develop some techniques systematically so that anyone with a little exposure to multivariable calculus can easily follow the steps and understand the various methods by which the Jacobians in complicated matrix transformations are evaluated. The material is developed slowly, with lots of worked examples, aimed at self-study. Some exercises are also given, at the end of each section.The book is a valuable reference for statisticians, engineers, physicists, econometricians, applied mathematicians and people working in many other areas. It can be used for a one-semester graduate level course on Jacobians and functions of matrix argument.
Fractional calculus in terms of mathematics and statistics and its applications to problems in natural sciences is NOT yet part of university teaching curricula. This book is one attempt to provide an approach to include topics of fractional calculus into university curricula. Additionally the material is useful for people who do research work in the areas of special functions, fractional calculus, applications of fractional calculus, and mathematical statistics.
In order not to intimidate students by a too abstract approach, this textbook on linear algebra is written to be easy to digest by non-mathematicians. It introduces the concepts of vector spaces and mappings between them without dwelling on statements such as theorems and proofs too much. It is also designed to be self-contained, so no other material is required for an understanding of the topics covered. As the basis for courses on space and atmospheric science, remote sensing, geographic information systems, meteorology, climate and satellite communications at UN-affiliated regional centers, various applications of the formal theory are discussed as well. These include differential equations, statistics, optimization and some engineering-motivated problems in physics. Contents Vectors Matrices Determinants Eigenvalues and eigenvectors Some applications of matrices and determinants Matrix series and additional properties of matrices
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.