This book is devoted to some recently developed techniques in quantum field theory (QFT), as well as to their main applications to different areas of parti cle physics. All together they are known as the effective or phenomenological Lagrangian formalism. Motivated by the enormous amount of work carried out in this field during the last years, our purpose when writing this book has been to give a modern and pedagogical exposition of the most relevant as pects of the topic. We hope that our efforts will be useful, both for graduated students in the search for a solid theoretical background in modern phe nomenology and for more experimented particle physicists willing to learn about this field or to start working on it. Even though we have tried to keep the book as self-contained as possible, it has been written assuming that the reader is familiar, at least, with the most basic concepts and techniques of QFT, gauge theories, the standard model (SM) and differential geometry, at the level of graduate studies. It is therefore possible that senior high-energy physicists may find the book too detailed and so they could probably omit several sections. The book is divided into two main parts and the appendices. In the first part we introduce the fundamentals of the effective Lagrangian formalism and other basic topics such as Ward identities, non-linear sigma models (NLSM), spontaneous symmetry breaking (SSB), anomalies, the SM symmetries, etc.
This book provides the latest technical information on sustainable materials that are feedstocks for additive manufacturing (AM). Topics covered include an up-to-date and extensive overview of raw materials, their chemistry, and functional properties of their commercial versions; a description of the relevant AM processes, products, applications, advantages, and limitations; prices and market data; and a forecast of sustainable materials used in AM, their properties, and applications in the near future. Data included are relative to current commercial products and are presented in easy-to-read tables and charts. Features Highlights up-to-date information and data of actual commercial materials Offers a broad survey of state-of the-art information Forecasts future materials, applications, and areas of R&D Contains simple language, explains technical terms, and minimizes technical lingo Includes over 200 tables, nearly 200 figures, and more than 1,700 references to technical publications, mostly very recent Handbook of Sustainable Polymers for Additive Manufacturing appeals to a diverse audience of students and academic, technical, and business professionals in the fields of materials science and mechanical, chemical, and manufacturing engineering.
This text offers a brief introduction to the dispersion relations as an approach to calculate S-matrix elements, a formalism that allows one to take advantage of the analytical structure of scattering amplitudes following the basic principles of unitarity and causality. First, the case of two-body scattering is considered and then its contribution to other processes through final-state interactions is discussed. For two-body scattering amplitudes, the general expression for a partial-wave amplitude is derived in the approximation where the crossed channel dynamics is neglected. This is taken as the starting point for many interesting nonperturbative applications, both in the light and heavy quark sector. Subsequently crossed channel dynamics is introduced within the equations for calculating the partial-wave amplitudes. Some applications based on methods that treat crossed-channel dynamics perturbatively are discussed too. The last part of this introductory treatment is dedicated to the further impact of scattering amplitudes on a variety of processes through final-state interactions. Several possible approaches are discussed such as the Muskhelishvili-Omnes dispersive integral equations and other closed formulae. These different formalisms are then applied in particular to the study of resonances presenting a number of challenging properties. The book ends with a chapter illustrating the use of dispersion relations in the nuclear medium for the evaluation of the energy density in nuclear matter.
This book is devoted to some recently developed techniques in quantum field theory (QFT), as well as to their main applications to different areas of parti cle physics. All together they are known as the effective or phenomenological Lagrangian formalism. Motivated by the enormous amount of work carried out in this field during the last years, our purpose when writing this book has been to give a modern and pedagogical exposition of the most relevant as pects of the topic. We hope that our efforts will be useful, both for graduated students in the search for a solid theoretical background in modern phe nomenology and for more experimented particle physicists willing to learn about this field or to start working on it. Even though we have tried to keep the book as self-contained as possible, it has been written assuming that the reader is familiar, at least, with the most basic concepts and techniques of QFT, gauge theories, the standard model (SM) and differential geometry, at the level of graduate studies. It is therefore possible that senior high-energy physicists may find the book too detailed and so they could probably omit several sections. The book is divided into two main parts and the appendices. In the first part we introduce the fundamentals of the effective Lagrangian formalism and other basic topics such as Ward identities, non-linear sigma models (NLSM), spontaneous symmetry breaking (SSB), anomalies, the SM symmetries, etc.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.