Mechanical Design of Machine Components, Second Edition strikes a balance between theory and application, and prepares students for more advanced study or professional practice. It outlines the basic concepts in the design and analysis of machine elements using traditional methods, based on the principles of mechanics of materials. The text combine
Mechanics of Materials teaches concepts and problem-solving skills with practical applications. The text provides a wide variety of worked examples, case studies, and homework problems to motivate students and help them develop their problem-solving skills. Mechanics of Materials provides a visual, concise, and technically accurate presentation which appeals to today’s student.
Noted for its practical, accessible approach to senior and graduate-level engineering mechanics, Plates and Shells: Theory and Analysis is a long-time bestselling text on the subjects of elasticity and stress analysis. Many new examples and applications are included to review and support key foundational concepts. Advanced methods are discussed and analyzed, accompanied by illustrations. Problems are carefully arranged from the basic to the more challenging level. Computer/numerical approaches (Finite Difference, Finite Element, MATLAB) are introduced, and MATLAB code for selected illustrative problems and a case study is included.
Mechanical Engineering Design, Third Edition, SI Version strikes a balance between theory and application, and prepares students for more advanced study or professional practice. Updated throughout, it outlines basic concepts and provides the necessary theory to gain insight into mechanics with numerical methods in design. Divided into three sections, the text presents background topics, addresses failure prevention across a variety of machine elements, and covers the design of machine components as well as entire machines. Optional sections treating special and advanced topics are also included. Features: Places a strong emphasis on the fundamentals of mechanics of materials as they relate to the study of mechanical design Furnishes material selection charts and tables as an aid for specific utilizations Includes numerous practical case studies of various components and machines Covers applied finite element analysis in design, offering this useful tool for computer-oriented examples Addresses the ABET design criteria in a systematic manner Presents independent chapters that can be studied in any order Mechanical Engineering Design, Third Edition, SI Version allows students to gain a grasp of the fundamentals of machine design and the ability to apply these fundamentals to various new engineering problems.
Analyze and Solve Real-World Machine Design Problems Using SI Units Mechanical Design of Machine Components, Second Edition: SI Version strikes a balance between method and theory, and fills a void in the world of design. Relevant to mechanical and related engineering curricula, the book is useful in college classes, and also serves as a reference for practicing engineers. This book combines the needed engineering mechanics concepts, analysis of various machine elements, design procedures, and the application of numerical and computational tools. It demonstrates the means by which loads are resisted in mechanical components, solves all examples and problems within the book using SI units, and helps readers gain valuable insight into the mechanics and design methods of machine components. The author presents structured, worked examples and problem sets that showcase analysis and design techniques, includes case studies that present different aspects of the same design or analysis problem, and links together a variety of topics in successive chapters. SI units are used exclusively in examples and problems, while some selected tables also show U.S. customary (USCS) units. This book also presumes knowledge of the mechanics of materials and material properties. New in the Second Edition: Presents a study of two entire real-life machines Includes Finite Element Analysis coverage supported by examples and case studies Provides MATLAB solutions of many problem samples and case studies included on the book’s website Offers access to additional information on selected topics that includes website addresses and open-ended web-based problems Class-tested and divided into three sections, this comprehensive book first focuses on the fundamentals and covers the basics of loading, stress, strain, materials, deflection, stiffness, and stability. This includes basic concepts in design and analysis, as well as definitions related to properties of engineering materials. Also discussed are detailed equilibrium and energy methods of analysis for determining stresses and deformations in variously loaded members. The second section deals with fracture mechanics, failure criteria, fatigue phenomena, and surface damage of components. The final section is dedicated to machine component design, briefly covering entire machines. The fundamentals are applied to specific elements such as shafts, bearings, gears, belts, chains, clutches, brakes, and springs.
The Leading Practical Guide to Stress Analysis—Updated with State-of-the-Art Methods, Applications, and Problems This widely acclaimed exploration of real-world stress analysis reflects advanced methods and applications used in today’s mechanical, civil, marine, aeronautical engineering, and engineering mechanics/science environments. Practical and systematic, Advanced Mechanics of Materials and Applied Elasticity, Sixth Edition, has been updated with many new examples, figures, problems, MATLAB solutions, tables, and charts. The revised edition balances discussions of advanced solid mechanics, elasticity theory, classical analysis, and computer-oriented approaches that facilitate solutions when problems resist conventional analysis. It illustrates applications with case studies, worked examples, and problems drawn from modern applications, preparing readers for both advanced study and practice. Readers will find updated coverage of analysis and design principles, fatigue criteria, fracture mechanics, compound cylinders, rotating disks, 3-D Mohr’s circles, energy and variational methods, buckling of various columns, common shell types, inelastic materials behavior, and more. The text addresses the use of new materials in bridges, buildings, automobiles, submarines, ships, aircraft, and spacecraft. It offers significantly expanded coverage of stress concentration factors and contact stress developments. This book aims to help the reader Review fundamentals of statics, solids mechanics, stress, and modes of load transmission Master analysis and design principles through hands-on practice to illustrate their connections Understand plane stress, stress transformations, deformations, and strains Analyze a body’s load-carrying capacity based on strength, stiffness, and stability Learn and apply the theory of elasticity Explore failure criteria and material behavior under diverse conditions, and predict component deformation or buckling Solve problems related to beam bending, torsion of noncircular bars, and axisymmetrically loaded components, plates, or shells Use the numerical finite element method to economically solve complex problems Characterize the plastic behavior of materials Register your product for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Noted for its practical, accessible approach to senior and graduate-level engineering mechanics, Plates and Shells: Theory and Analysis is a long-time bestselling text on the subjects of elasticity and stress analysis. Many new examples and applications are included to review and support key foundational concepts. Advanced methods are discussed and analyzed, accompanied by illustrations. Problems are carefully arranged from the basic to the more challenging level. Computer/numerical approaches (Finite Difference, Finite Element, MATLAB) are introduced, and MATLAB code for selected illustrative problems and a case study is included.
This systematic exploration of real-world stress analysis has been completely updated to reflect state-of-the-art methods and applications now used in aeronautical, civil, and mechanical engineering, and engineering mechanics. Distinguished by its exceptional visual interpretations of solutions, Advanced Mechanics of Materials and Applied Elasticity offers in-depth coverage for both students and engineers. The authors carefully balance comprehensive treatments of solid mechanics, elasticity, and computer-oriented numerical methods—preparing readers for both advanced study and professional practice in design and analysis. This major revision contains many new, fully reworked, illustrative examples and an updated problem set—including many problems taken directly from modern practice. It offers extensive content improvements throughout, beginning with an all-new introductory chapter on the fundamentals of materials mechanics and elasticity. Readers will find new and updated coverage of plastic behavior, three-dimensional Mohr’s circles, energy and variational methods, materials, beams, failure criteria, fracture mechanics, compound cylinders, shrink fits, buckling of stepped columns, common shell types, and many other topics. The authors present significantly expanded and updated coverage of stress concentration factors and contact stress developments. Finally, they fully introduce computer-oriented approaches in a comprehensive new chapter on the finite element method.
This systematic exploration of real-world stress analysis has been completely revised and updated to reflect state-of-the-art methods and applications now in use throughout the fields of aeronautical, civil, and mechanical engineering and engineering mechanics. Distinguished by its exceptional visual interpretations of the solutions, it offers an in-depth coverage of the subjects for students and practicing engineers. The authors carefully balance comprehensive treatments of solid mechanics, elasticity, and computer-oriented numerical methods. In addition, a wide range of fully worked illustrative examples and an extensive problem sets–many taken directly from engineering practice–have been incorporated. Key additions to the Fourth Edition of this highly acclaimed textbook are materials dealing with failure theories, fracture mechanics, compound cylinders, numerical approaches, energy and variational methods, buckling of stepped columns, common shell types, and more. Contents include stress, strain and stress-strain relations, problems in elasticity, static and dynamic failure criteria, bending of beams and torsion of bars, finite difference and finite element methods, axisymmetrically loaded members, beams on elastic foundations, energy methods, elastic stability, plastic behavior of materials, stresses in plates and shells, and selected references to expose readers to the latest information in the field.
Noted for its practical, student-friendly approach to graduate-level mechanics, this volume is considered one of the top references—for students or professioals—on the subject of elasticity and stress in construction. The author presents many examples and applications to review and support several foundational concepts. The more advanced concepts in elasticity and stress are analyzed and introduced gradually, accompanied by even more examples and engineering applications in addition to numerous illustrations.Chapter problems are carefully arranged from the basic to the more challenging. The author covers computer methods, including FEA and computational/equation-solving software, and, in many cases, classical and numerical/computer approaches.
Analyze and Solve Real-World Machine Design Problems Using SI Units Mechanical Design of Machine Components, Second Edition: SI Version strikes a balance between method and theory, and fills a void in the world of design. Relevant to mechanical and related engineering curricula, the book is useful in college classes, and also serves as a reference for practicing engineers. This book combines the needed engineering mechanics concepts, analysis of various machine elements, design procedures, and the application of numerical and computational tools. It demonstrates the means by which loads are resisted in mechanical components, solves all examples and problems within the book using SI units, and helps readers gain valuable insight into the mechanics and design methods of machine components. The author presents structured, worked examples and problem sets that showcase analysis and design techniques, includes case studies that present different aspects of the same design or analysis problem, and links together a variety of topics in successive chapters. SI units are used exclusively in examples and problems, while some selected tables also show U.S. customary (USCS) units. This book also presumes knowledge of the mechanics of materials and material properties. New in the Second Edition: Presents a study of two entire real-life machines Includes Finite Element Analysis coverage supported by examples and case studies Provides MATLAB solutions of many problem samples and case studies included on the book’s website Offers access to additional information on selected topics that includes website addresses and open-ended web-based problems Class-tested and divided into three sections, this comprehensive book first focuses on the fundamentals and covers the basics of loading, stress, strain, materials, deflection, stiffness, and stability. This includes basic concepts in design and analysis, as well as definitions related to properties of engineering materials. Also discussed are detailed equilibrium and energy methods of analysis for determining stresses and deformations in variously loaded members. The second section deals with fracture mechanics, failure criteria, fatigue phenomena, and surface damage of components. The final section is dedicated to machine component design, briefly covering entire machines. The fundamentals are applied to specific elements such as shafts, bearings, gears, belts, chains, clutches, brakes, and springs.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.