This book presents a study of neuroscience models and natural phenomena, such as tsunami waves and tornados. The first part discusses various mathematical models of tsunamis, including the Korteweg–de Vries equation, shallow water equations and the Camassa–Holm equation (CH). In order to study the dynamics of these models, the text uses the Cellular Nonlinear Networks (CNN) approach to discretize the governing equation using a suitable mathematical grid. The second part discusses some of the models arising in the field of neuroscience. It examines the Fitzhugh-Nagumo systems, which are very important for understanding the qualitative nature of nerve impulse propagation. The volume will be of interest to a wide-ranging audience, including PhD students, mathematicians, physicists, engineers and specialists in the domain of nonlinear waves and their applications.
Big Nate is the star goalie of his school's soccer team, and he is tasked with defending his goal and saving the day against Jefferson Middle School, their archrival.
This volume provides an in-depth treatment of several equations and systems of mathematical physics, describing the propagation and interaction of nonlinear waves as different modifications of these: the KdV equation, Fornberg-Whitham equation, Vakhnenko equation, Camassa-Holm equation, several versions of the NLS equation, Kaup-Kupershmidt equation, Boussinesq paradigm, and Manakov system, amongst others, as well as symmetrizable quasilinear hyperbolic systems arising in fluid dynamics.Readers not familiar with the complicated methods used in the theory of the equations of mathematical physics (functional analysis, harmonic analysis, spectral theory, topological methods, a priori estimates, conservation laws) can easily be acquainted here with different solutions of some nonlinear PDEs written in a sharp form (waves), with their geometrical visualization and their interpretation. In many cases, explicit solutions (waves) having specific physical interpretation (solitons, kinks, peakons, ovals, loops, rogue waves) are found and their interactions are studied and geometrically visualized. To do this, classical methods coming from the theory of ordinary differential equations, the dressing method, Hirota's direct method and the method of the simplest equation are introduced and applied. At the end, the paradifferential approach is used.This volume is self-contained and equipped with simple proofs. It contains many exercises and examples arising from the applications in mechanics, physics, optics and, quantum mechanics.
This volume provides an in-depth treatment of several equations and systems of mathematical physics, describing the propagation and interaction of nonlinear waves as different modifications of these: the KdV equation, Fornberg-Whitham equation, Vakhnenko equation, Camassa-Holm equation, several versions of the NLS equation, Kaup-Kupershmidt equation, Boussinesq paradigm, and Manakov system, amongst others, as well as symmetrizable quasilinear hyperbolic systems arising in fluid dynamics.Readers not familiar with the complicated methods used in the theory of the equations of mathematical physics (functional analysis, harmonic analysis, spectral theory, topological methods, a priori estimates, conservation laws) can easily be acquainted here with different solutions of some nonlinear PDEs written in a sharp form (waves), with their geometrical visualization and their interpretation. In many cases, explicit solutions (waves) having specific physical interpretation (solitons, kinks, peakons, ovals, loops, rogue waves) are found and their interactions are studied and geometrically visualized. To do this, classical methods coming from the theory of ordinary differential equations, the dressing method, Hirota's direct method and the method of the simplest equation are introduced and applied. At the end, the paradifferential approach is used.This volume is self-contained and equipped with simple proofs. It contains many exercises and examples arising from the applications in mechanics, physics, optics and, quantum mechanics.
This book deals with new theoretical results for studyingCellular Neural Networks (CNNs) concerning its dynamical behavior. Newaspects of CNNs' applications are developed for modelling of somefamous nonlinear partial differential equations arising in biology, genetics, neurophysiology, physics, ecology, etc. The analysis ofCNNs' models is based on the harmonic balance method well known incontrol theory and in the study of electronic oscillators. Suchphenomena as hysteresis, bifurcation and chaos are studied for CNNs.The topics investigated in the book involve several scientificdisciplines, such as dynamical systems, applied mathematics, mathematical modelling, information processing, biology andneurophysiology. The reader will find comprehensive discussion on thesubject as well as rigorous mathematical analyses of networks ofneurons from the view point of dynamical systems. The text is writtenas a textbook for senior undergraduate and graduate students inapplied mathematics. Providing a summary of recent results on dynamicsand modelling of CNNs, the book will also be of interest to allresearchers in the area.
This book presents a study of neuroscience models and natural phenomena, such as tsunami waves and tornados. The first part discusses various mathematical models of tsunamis, including the Korteweg-de Vries equation, shallow water equations and the Camassa-Holm equation (CH). In order to study the dynamics of these models, the text uses the Cellular Nonlinear Networks (CNN) approach to discretize the governing equation using a suitable mathematical grid. The second part discusses some of the models arising in the field of neuroscience. It examines the Fitzhugh-Nagumo systems, which are very important for understanding the qualitative nature of nerve impulse propagation.The volume will be of interest to a wide-ranging audience, including PhD students, mathematicians, physicists, engineers and specialists in the domain of nonlinear waves and their applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.