Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.
The central theme of this lecture collection is quantum dynamics, regarded mostly as the dynamics of entanglement and that of decoherence phenomena. Both these concepts appear to refer to the behavior of surprisingly fragile features of quantum systems supposed to model quantum memories and to implement quantum date processing routines. This collection may serve as an essential resource for those interested in both theoretical description and practical applications of fundamentals of quantum mechanics.
A publication called Aging in the Social Space is a compilation of studies, which deal with theoretical understanding and empirical solutions, learning about problem spheres, specifying content parallels of social, legal, economic, moral and ethical views on senior issues in society, which are closely related to each other and are interconnected. This publication focus on the case study of Poland. It is supposed to provide a multidimensional view of old age issues and issues related to aging and care for old people in society. We believe that it is natural also to name individual spheres, in which society has some eff ect, either direct or indirect, within issues concerning seniors. Learning about these spheres is the primary prerequisite for successful use of social help to seniors in society.
This book presents the up-to-date status of quantum theory and the outlook for its development in the 21st century. The covered topics include basic problems of quantum physics, with emphasis on the foundations of quantum theory, quantum computing and control, quantum optics, coherent states and Wigner functions, as well as on methods of quantum physics based on Lie groups and algebras, quantum groups and noncommutative geometry.
Several well-established geometric and topological methods are used in this work in an application to a beautiful physical phenomenon known as the geometric phase. This book examines the geometric phase, bringing together different physical phenomena under a unified mathematical scheme. The material is presented so that graduate students and researchers in applied mathematics and physics with an understanding of classical and quantum mechanics can handle the text.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.