Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at late stages of transition. These include secondary instabilities and nonlinear features of boundary-layer perturbations that lead to the final breakdown to turbulence. Thus, the reader is provided with a step-by-step approach that covers the milestones and recent advances in the laminar-turbulent transition. Special aspects of instability and transition are discussed through the book and are intended for research scientists, while the main target of the book is the student in the fundamentals of fluid mechanics. Computational guides, recommended exercises, and PowerPoint multimedia notes based on results of real scientific experiments supplement the monograph. These are especially helpful for the neophyte to obtain a solid foundation in hydrodynamic stability. To access the supplementary material go to extras.springer.com and type in the ISBN for this volume.
The Tradition of the Gospel Christians explores the post-Soviet tradition of evangelical Christians originating from the ministry of the Victorian revivalist preacher Lord Radstock in St. Petersburg in the 1870s. In an effort to resolve the current evangelical crises of theology and identity, this study provides an analysis of the tradition's history reflecting on its restorationist tradition, the contours and vectors of its theology, and its practice of biblical interpretation. The historical analysis reveals that the major causes of the crises of identity and theology pertain to the socio-political upheavals, which, in turn, led the tradition to develop strategies to maintain relevance in its changed contexts. The socio-political shifts were also responsible for the lack of emphasis on research and scholarship, which contributed to a difficulty in finding the necessary resources and intellectual virtues to deal with the collapse of the Soviet Union. Building on the discoveries of the historical analysis, Andrey P. Puzynin offers a new historical and theological paradigm by reconstructing the self-identifying narrative and theological framework in critical dialogue with recent developments in Anglo-American evangelicalism and postliberalism. Following the trajectory of the evangelical tradition in the post-Soviet context, a trajectory which relies on Western thought, the book adopts the narrative theological method of reading the world though the lens of Scripture. The self-identifying narrative of the community is reconstructed through a theological reading of the previous identity-constructions, in the light of recent discussions on Christ and the powers. The result of this study helpfully explains the dynamics of Eastern evangelicalism in a traditionally Russian Orthodox setting.
This book introduces a comprehensive methodology for adaptive control design of parabolic partial differential equations with unknown functional parameters, including reaction-convection-diffusion systems ubiquitous in chemical, thermal, biomedical, aerospace, and energy systems. Andrey Smyshlyaev and Miroslav Krstic develop explicit feedback laws that do not require real-time solution of Riccati or other algebraic operator-valued equations. The book emphasizes stabilization by boundary control and using boundary sensing for unstable PDE systems with an infinite relative degree. The book also presents a rich collection of methods for system identification of PDEs, methods that employ Lyapunov, passivity, observer-based, swapping-based, gradient, and least-squares tools and parameterizations, among others. Including a wealth of stimulating ideas and providing the mathematical and control-systems background needed to follow the designs and proofs, the book will be of great use to students and researchers in mathematics, engineering, and physics. It also makes a valuable supplemental text for graduate courses on distributed parameter systems and adaptive control.
This book introduces and reviews both theory and applications of polarizational bremsstrahlung, i.e. the electromagnetic radiation emitted during collisions of charged particles with structured, thus polarizable targets, such as atoms, molecules and clusters. The subject, following the first experimental evidence a few decades ago, has gained importance through a number of modern applications. Thus, the study of several radiative mechanisms is expected to lead to the design of novel light sources, operating in various parts of the electromagnetic spectrum. Conversely, the analysis of the spectral and angular distribution of the photon emission constitutes a new tool for extracting information on the interaction of the colliding particles, and on their internal structure and dynamical properties. Last but not least, accurate quantitative descriptions of the photon emission processes determine the radiative energy losses of particles in various media, thereby providing essential information required for e.g. plasma diagnostics as well as astrophysical and medical applications (such as radiation therapy). This book primarily addresses graduate students and researchers with a background in atomic, molecular, optical or plasma physics, but will also be of benefit to anyone wishing to enter the field.
This book describes several techniques, first invented in physics for solving problems of heat and mass transfer, and applies them to various problems of mathematical finance defined in domains with moving boundaries. These problems include: (a) semi-closed form pricing of options in the one-factor models with time-dependent barriers (Bachelier, Hull-White, CIR, CEV); (b) analyzing an interconnected banking system in the structural credit risk model with default contagion; (c) finding first hitting time density for a reducible diffusion process; (d) describing the exercise boundary of American options; (e) calculating default boundary for the structured default problem; (f) deriving a semi-closed form solution for optimal mean-reverting trading strategies; to mention but some.The main methods used in this book are generalized integral transforms and heat potentials. To find a semi-closed form solution, we need to solve a linear or nonlinear Volterra equation of the second kind and then represent the option price as a one-dimensional integral. Our analysis shows that these methods are computationally more efficient than the corresponding finite-difference methods for the backward or forward Kolmogorov PDEs (partial differential equations) while providing better accuracy and stability.We extend a large number of known results by either providing solutions on complementary or extended domains where the solution is not known yet or modifying these techniques and applying them to new types of equations, such as the Bessel process. The book contains several novel results broadly applicable in physics, mathematics, and engineering.
The worst thing an athlete can experience is a career-threatening injury. On April 22, 2011 rising MLS star Steve Zakuani broke his leg and his career was immediately put in jeopardy. In one moment, he lost everything he had worked his whole life for. There is no way to prepare for something like that. It took him 500 days to fully recover and get back on the field. People always ask Steve what that experience was like, and if he had any advice for someone going through something similar. This book is his recollection of the setbacks, fears, doubts, victories, advice, and encouragement he experienced as he fought for his career. Derived from the journals he kept during his 500 day recovery, it is his hope that this book will inspire you to face any adversity you encounter head on.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.