Stein's startling technique for deriving probability approximations first appeared about 30 years ago. Since then, much has been done to refine and develop the method, but it is still a highly active field of research, with many outstanding problems, both theoretical and in applications. This volume, the proceedings of a workshop held in honour of Charles Stein in Singapore, August 2003, contains contributions from many of the mathematicians at the forefront of this effort. It provides a cross-section of the work currently being undertaken, with many pointers to future directions. The papers in the collection include applications to the study of random binary search trees, Brownian motion on manifolds, Monte-Carlo integration, Edgeworth expansions, regenerative phenomena, the geometry of random point sets, and random matrices.
A common theme in probability theory is the approximation of complicated probability distributions by simpler ones, the central limit theorem being a classical example. Stein's method is a tool which makes this possible in a wide variety of situations. Traditional approaches, for example using Fourier analysis, become awkward to carry through in situations in which dependence plays an important part, whereas Stein's method can often still be applied to great effect. In addition, the method delivers estimates for the error in the approximation, and not just a proof of convergence. Nor is there in principle any restriction on the distribution to be approximated; it can equally well be normal, or Poisson, or that of the whole path of a random process, though the techniques have so far been worked out in much more detail for the classical approximation theorems.This volume of lecture notes provides a detailed introduction to the theory and application of Stein's method, in a form suitable for graduate students who want to acquaint themselves with the method. It includes chapters treating normal, Poisson and compound Poisson approximation, approximation by Poisson processes, and approximation by an arbitrary distribution, written by experts in the different fields. The lectures take the reader from the very basics of Stein's method to the limits of current knowledge.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.