This book provides insights into the benefits of using remote sensing data from a geoscientist's perspective, by integrating the data with the understanding of Earth's surface and subsurface. In 3 sections, the book takes a detailed look at what data explorationists use when they explore for hydrocarbon resources, assess different terrain types for planning and hazards and extract present-day geologic analogs for subsurface geologic settings. The book presents the usage of remote sensing data in exploration in a structured way by detecting individual geologic features as building blocks for complex geologic systems. This concept enables readers to build their own workflows for the assessment of complex geologic systems using various combinations of remote sensing data. Section 1 introduces readers to the foundations of remote sensing for exploration, covers various methods of image processing and studies different digital elevation and bathymetry models. Section 2 presents the concept of geomorphology as a means to integrate surface and subsurface data. Different aspects of rendering in 2D and 3D are explained and used for the interpretation and extraction of geologic features that are used in exploration. Section 3 addresses remote sensing for hydrocarbon exploration in detail, from geophysical data acquisition to development and infrastructure planning. The organization of this chapter follows an exploration workflow from regional to local modeling studying basin and petroleum system modeling as well as logistics planning of seismic surveys and near-surface modeling. Aspects of field development and infrastructure planning comprise multi-temporal and dynamic modeling. The section closes with a structured approach to extracting geologic analogs from interpreted remote sensing data. The book will be of interest to professionals and students working in exploration for hydrocarbons and water resources, as well as geoscientists and engineers using remote sensing for infrastructure planning, hazard assessment and dynamic environmental studies.
This book provides insights into the benefits of using remote sensing data from a geoscientist's perspective, by integrating the data with the understanding of Earth's surface and subsurface. In 3 sections, the book takes a detailed look at what data explorationists use when they explore for hydrocarbon resources, assess different terrain types for planning and hazards and extract present-day geologic analogs for subsurface geologic settings. The book presents the usage of remote sensing data in exploration in a structured way by detecting individual geologic features as building blocks for complex geologic systems. This concept enables readers to build their own workflows for the assessment of complex geologic systems using various combinations of remote sensing data. Section 1 introduces readers to the foundations of remote sensing for exploration, covers various methods of image processing and studies different digital elevation and bathymetry models. Section 2 presents the concept of geomorphology as a means to integrate surface and subsurface data. Different aspects of rendering in 2D and 3D are explained and used for the interpretation and extraction of geologic features that are used in exploration. Section 3 addresses remote sensing for hydrocarbon exploration in detail, from geophysical data acquisition to development and infrastructure planning. The organization of this chapter follows an exploration workflow from regional to local modeling studying basin and petroleum system modeling as well as logistics planning of seismic surveys and near-surface modeling. Aspects of field development and infrastructure planning comprise multi-temporal and dynamic modeling. The section closes with a structured approach to extracting geologic analogs from interpreted remote sensing data. The book will be of interest to professionals and students working in exploration for hydrocarbons and water resources, as well as geoscientists and engineers using remote sensing for infrastructure planning, hazard assessment and dynamic environmental studies.
Provides a foundation for understanding the fascinating field of seismic processing, addressing that portion which precedes migration. Written for the non-expert, this volume reveals the limitations and potential pitfalls of seismic data, explains seismic processing operations as a series of solutions to problems, and more.
In 1851, Heinrich Müller discovered what he called “radial fibers” and what we now call Müller cells, as the principal glial cells of the vertebrate retina. Later on, other glial cell types were found in the retina, including astrocytes, microglia, and even oligodendrocytes. It turned out that retinal glial cells are essential constituents of the tissue. For instance, Müller cells appear to constitute the “core” of columnar units of clonally and functionally related groups of neurons. Their primary function is to support neuronal functioning by guiding the light towards the photoreceptor cells, removing excess neurotransmitter molecules from extracellular space, and performing efficient clearance of excess extracellular potassium ions. The latter two functions are also crucial for neuronal survival and are coupled to water clearance which is also essential. Müller cells are capable of “sensing” neuronal activity and modifying it by the release of signal substances (gliotransmitters). In cases of retinal injuries the Müller cells become reactive, and all above-mentioned functions are impaired. However, such de-differentiated Müller cells may proliferate, and may even serve as stem cells for the regeneration of a damaged retina. As well as the Müller cells, retinal astrocytes and microglial cells are important players in retinal development and function. This book gives a comprehensive survey of the present knowledge on retinal glia.
Müller cells make up just 0.005% of the cells in our central nervous system. They do not belong to the more esteemed family of neuronal cells but to the glia, a family of cells that until recently were seen as mere filling material between the neurons. Now, however, all that has changed. Sharing the insights of more than a quarter century of research into Müller cells, Drs. Andreas Reichenbach and Andreas Bringmann of Leipzig University make a compelling case for the central role Müller cells play. Everyone agrees that the eye is a very special and versatile sense organ, yet it has turned out in recent years that Müller cells are peculiar and multipotent glial cells. In the retina of most vertebrates and even of many mammals, Müller cells are the only type of (macro- ) glial cells; thus, they are responsible for a wealth of neuron-supportive functions that, in the brain, rely upon a division of labour among astrocytes, oligodendrocytes, and ependymal cells. Even beyond such a role in the central nervous system as "model glia", Müller cells are adapted to several exciting roles in support of vision. They deliver the light stimuli to the photoreceptor cells in the inverted vertebrate retina, aid the processing of visual information, and are responsible for the homeostatic maintenance of the retinal extracellular milieu. In Müller Cells in the Healthy and Diseased Retina, aimed not just at neurobiologists but at anyone concerned with retinal degeneration, every angle of Müller cells is covered, from an introduction to their basic properties, through their roles as 'light cables' and 'shock absorbers', to the part they play in diseases and disorders of the eye. Once these have all been covered in detail, the authors move on to discuss the future direction of research into these small but potent cellular phenomena. About the Authors Dr. Andreas Reichenbach was born in 1950 in Leipzig, Germany. He studied medicine and specialized as a physiologist, working on the mammalian retina. Since 1984, he has focused his efforts - and those of a growing number of fellows in his team - on Müller cell research. He has held a professorship at Leipzig University since 1994. After studying biology, Dr. Andreas Bringmann (* 1960) worked in the field of systemic neurophysiology until he was inspired in 1996 by Andreas Reichenbach to research the most interesting cell, the Müller cell. He is now in the Department of Ophthalmology of the University of Leipzig where he is the head of the Basic Research Laboratory
The Fovea: Structure, Function, Development, and Disease summarizes the current biological knowledge regarding the two types of the vertebrate fovea (and its main structural elements, the Müller cells). This information is then used to explain different aspects of human vision, foveal development, and macular disorders. Sections give an overview of the retinal structure and the different types of retinal glia, survey the structure and function of the primate and non-mammalian fovea types, discuss foveal development—with a focus on the human fovea, cover the roles of Müller cells and astrocytes in the pathogenesis and regeneration of various human macular disorders are described. Using a translational approach, this reference is a valuable text for scientists, clinicians and physicians interested in the fovea. Readers will gain a new understanding of the cellular basics of the fovea, which is the most important part of the eye. - Adopts a translational approach, summarizing the biological knowledge regarding the structure and function of the fovea, the roles of Müller cells in mediating the structural integrity, and function of the fovea - Provides overviews of both basic types of the vertebrate fovea, countering the popular belief that there is only one type of the vertebrate fovea, the human fovea - Thoroughly shows the mechanisms involved in the development of the fovea that explain the rapid improvement of visual acuity in newborns - Explains pathological changes in the foveal structure and function with evaluation pointing toward possible prevention and/or cure
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.