Cross-linked thermoplastics represent an important class of materials for numerous applications such as heat-shrinkable tubing, rotational molded parts, and polyolefin foams. By cross-linking olefins, their mechanical performance can be significantly enhanced. This chapter covers the three main methods for the cross-linking of thermoplastics: radiation cross-linking, chemical cross-linking with organic peroxides, and cross-linking using silane-grafting agents. It also considers the major effects of the cross-linking procedure on the performance of the thermoplastic materials discussed.
This chapter addresses the importance and usage of the commercially low volume thermoset plastics group known as allyls. The three significant sub-elements of this group are poly(diallylphthalates), poly(diallylisophthalates), and poly(allyldiglycol carbonate). Chemistry, processing, and properties are also described. Allyl polymers are synthesized by radical polymerizations of allyl monomers that usually do not produce high-molecular-mass macromolecules. Therefore, only a few specific monomers can produce thermosetting materials. Diallyldiglycolcarbonate (CR-39) and diallylphthalates are the most significant examples that have considerably improved our everyday life.
Due to their special structural features (triazine ring, oxygen linkages, low dielectric loss) cyanate ester resins represent a promising class of high-performance polymers. They are suitable as matrix materials for applications where, among other properties, stability at high service temperatures, low dielectric loss, and good mechanical performance is required. This chapter deals with some general aspects regarding the chemistry and technology of cyanate ester resins and highlights their most important applications. Relevant performance characteristics of cyanate esters and selected blends with bismaleimide and epoxy resins are briefly discussed. Some recent developments regarding novel monomers are presented as well.
Silicones are found in a variety of applications with requirements that range from long life at elevated temperatures to fluidity at low temperatures. This chapter first considers silicone elastomers and their application in room temperature vulcanizing (RTV) and heat curing systems (HTV). Also, new technologies for UV curing are introduced. Coverage of RTVs includes both one-component and two-component systems and the different cure chemistries of each, and is followed by a separate discussion of silicone laminates. Due to the high importance of silicone fluids, they are also discussed. Fluids include polishes, release agents, surfactants, and dielectric fluids.
Process analysis and process control has attracted increasing interest in recent years. The development and application of process analytical methods is a prerequisite for the knowledge-based manufacturing of industrial goods, and allows for the production of high-value products of defined, constantly good quality. Discussed in this chapter are the measurement principle and some relevant aspects and illustrative examples of online monitoring tools as the basis for process control in the manufacturing and processing of thermosetting resins. Optical spectroscopy is featured as one of the main process analytical methods applicable to, among other applications, online monitoring of resin synthesis. In combination with chemometric methods for multivariate data analysis, powerful process models can be generated within the framework of feed-back and feed-forward control concepts. Other analytical methods covered in this chapter are those frequently used to control further processing of thermosets to the final parts, including: dielectric analysis, ultrasonics, fiberoptics, and fiber Bragg grating sensors.
Cross-linked thermoplastics represent an important class of materials for numerous applications such as heat-shrinkable tubing, rotational molded parts, and polyolefin foams. By cross-linking olefins, their mechanical performance can be significantly enhanced. This chapter covers the three main methods for the cross-linking of thermoplastics: radiation cross-linking, chemical cross-linking with organic peroxides, and cross-linking using silane-grafting agents. It also considers the major effects of the cross-linking procedure on the performance of the thermoplastic materials discussed.
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.