The book “Case Studies in Micromechatronics – From Systems to Process” offers prominent sample applications of micromechatronic systems and the enabling fabrication technologies. The chosen examples represent five main fields of application: consumer electronics (pressure sensor), mobility and navigation (acceleration sensor), handling technology and automation (micro gripper), laboratory diagnostics (point of care system), and biomedical technology (smart skin). These five sample systems are made from different materials requiring a large variety of modern fabrication methods and design rules, which are explained in detail. As a result, an inverted introduction “from prominent applications to base technologies” is provided. Examples of applications are selected to offer a broad overview of the development environment of micromechatronic systems including established as well as cutting-edge microfabrication technologies.
Müller cells make up just 0.005% of the cells in our central nervous system. They do not belong to the more esteemed family of neuronal cells but to the glia, a family of cells that until recently were seen as mere filling material between the neurons. Now, however, all that has changed. Sharing the insights of more than a quarter century of research into Müller cells, Drs. Andreas Reichenbach and Andreas Bringmann of Leipzig University make a compelling case for the central role Müller cells play. Everyone agrees that the eye is a very special and versatile sense organ, yet it has turned out in recent years that Müller cells are peculiar and multipotent glial cells. In the retina of most vertebrates and even of many mammals, Müller cells are the only type of (macro- ) glial cells; thus, they are responsible for a wealth of neuron-supportive functions that, in the brain, rely upon a division of labour among astrocytes, oligodendrocytes, and ependymal cells. Even beyond such a role in the central nervous system as "model glia", Müller cells are adapted to several exciting roles in support of vision. They deliver the light stimuli to the photoreceptor cells in the inverted vertebrate retina, aid the processing of visual information, and are responsible for the homeostatic maintenance of the retinal extracellular milieu. In Müller Cells in the Healthy and Diseased Retina, aimed not just at neurobiologists but at anyone concerned with retinal degeneration, every angle of Müller cells is covered, from an introduction to their basic properties, through their roles as 'light cables' and 'shock absorbers', to the part they play in diseases and disorders of the eye. Once these have all been covered in detail, the authors move on to discuss the future direction of research into these small but potent cellular phenomena. About the Authors Dr. Andreas Reichenbach was born in 1950 in Leipzig, Germany. He studied medicine and specialized as a physiologist, working on the mammalian retina. Since 1984, he has focused his efforts - and those of a growing number of fellows in his team - on Müller cell research. He has held a professorship at Leipzig University since 1994. After studying biology, Dr. Andreas Bringmann (* 1960) worked in the field of systemic neurophysiology until he was inspired in 1996 by Andreas Reichenbach to research the most interesting cell, the Müller cell. He is now in the Department of Ophthalmology of the University of Leipzig where he is the head of the Basic Research Laboratory
Wilhelm Wagner (1803-1877), son of Peter Wagner, was born in Dürkheim, Germany. He married Friedericke Odenwald (1812-1893). They had nine children. They emigrated and settled in Illinois. His brother, Julius Wagner (1816-1903) married Emilie M. Schneider (1820-1896). They had seven children. They emigrated and settled in Texas.
Evolution of Water Supply Through the Millennia presents the major achievements in the scientific fields of water supply technologies and management throughout the millennia. It provides valuable insights into ancient water supply technologies with their apparent characteristics of durability, adaptability to the environment, and sustainability. A comparison of the water technological developments in several civilizations is undertaken. These technologies are the underpinning of modern achievements in water engineering and management practices. It is the best proof that “the past is the key for the future.” Rapid technological progress in the twentieth century created a disregard for past water technologies that were considered to be far behind the present ones. There are a great deal of unresolved problems related to the management principles, such as the decentralization of the processes, the durability of the water projects, the cost effectiveness, and sustainability issues such as protection from floods and droughts. In the developing world, such problems were intensified to an unprecedented degree. Moreover, new problems have arisen such as the contamination of surface and groundwater. Naturally, intensification of unresolved problems led societies to revisit the past and to reinvestigate the successful past achievements. To their surprise, those who attempted this retrospect, based on archaeological, historical, and technical evidence were impressed by two things: the similarity of principles with present ones and the advanced level of water engineering and management practices. Evolution of Water Supply Through the Millennia is intended for engineers in water resources companies, hydraulic design companies, and water Institutes. It can be used for all courses related to water resources. Authors: Andreas N. Angelakis, Institute of Iraklion, National Foundation for Agricultural Research (N.AG.RE.F.), Greece, Larry W. Mays, School of Sustainable Engineering and the Built Environment, Arizona State University, USA, Demetris Koutsoyiannis, School of Civil Engineering, National Technical University of Athens, Greece, Nikos Manassis, School of Civil Engineering, National Technical University of Athens, Greece.
Andreas Bihlmaier describes a novel method to model dynamic spatial relations by machine learning techniques. The method is applied to the task of representing the tacit knowledge of a trained camera assistant in minimally-invasive surgery. The model is then used for intraoperative control of a robot that autonomously positions the endoscope. Furthermore, a modular robotics platform is described, which forms the basis for this knowledge-based assistance system. Promising results from a complex phantom study are presented.
This monograph on the Central European Magdalenian aims to provide a comprehensive overview of the archaeological record of this period. It sheds new light on five regional groups between the Rhône valley to the west and the Vistula-valley to the east, which existed roughly between 20,000 and 14,000 years ago. Readers will discover that these groups are characterized with regard to their environmental setting (including faunal and vegetational aspects), lithic raw material and mollusk shell procurement, typology, technology and artesian craftworks. The work also explores an alternative interpretation of bidirectional recolonization from both Franco-Cantabria and Eastern Central Europe after the Last Glacial Maximum. This book will appeal to researchers and scholars in archaeology and cognate fields.
This is the fourth volume in a series exploring progess in photothermal and photoacoustic science and technology. The book focuses on semiconductors and electronic materials.
Responding to the need for an affordable, easy-to-read textbook that introduces microfluidics to undergraduate and postgraduate students, this concise book will provide a broad overview of the important theoretical and practical aspects of microfluidics and lab-on-a-chip, as well as its applications.
This book describes automatic methods for the design of droplet microfluidic networks. The authors discuss simulation and design methods which support the design process of droplet microfluidics in general, as well as design methods for a dedicated droplet routing mechanism, namely passive droplet routing. The methods discussed allow for simulating a microfluidic design on a high-abstraction level, which facilitates early validation of whether a design works as intended, automatically dimensioning a microfluidic design, so that constraints like flow conditions are satisfied, and automatically generating meander designs for the respective needs and fabrication settings. Dedicated methods for passive droplet routing are discussed and allow for designing application-specific architectures for a given set of experiments, as well as generating droplet sequences realizing the respective experiments. Together, these methods provide a comprehensive “toolbox" for designers working on droplet microfluidic networks in general and an integrated design flow for the passive droplet routing mechanism in particular. Provides both a comprehensive “toolbox" for designers working on droplet microfluidic networks in general and an integrated design flow for the passive droplet routing mechanism in particular; Describes for the first time CAD methods for droplet microfluidic networks, along with the first integrated design process; Includes open source implementations, in order to reach the largest possible user group within the domain of microfluidics.
This issue of PET Clinics focuses on PET/MRI: Clinical Applications, and is edited by Drs. Drew Torigian and Andreas Kjaer. Articles will include: PET/MRI in Prostate Cancer; PET/MRI in Vascular Disease; PET/MRI in Lymphoma; PET/MRI in Head and Neck Cancer; PET/MRI in Brain Disease; PET/MR in Cancers of GI Tract; PET/MRI in Gynecologic Cancer; Clinical PET/MRI Systems and Patient Workflow; PET/MRI in Heart Disease; PET/MR in Breast Cancer and Lung Cancer; PET/MRI in Musculoskeletal Disorders; PET/MRI in Pediatric Oncology; Clinical PET/MRI: Future Perspectives; and more!
The book “Case Studies in Micromechatronics – From Systems to Process” offers prominent sample applications of micromechatronic systems and the enabling fabrication technologies. The chosen examples represent five main fields of application: consumer electronics (pressure sensor), mobility and navigation (acceleration sensor), handling technology and automation (micro gripper), laboratory diagnostics (point of care system), and biomedical technology (smart skin). These five sample systems are made from different materials requiring a large variety of modern fabrication methods and design rules, which are explained in detail. As a result, an inverted introduction “from prominent applications to base technologies” is provided. Examples of applications are selected to offer a broad overview of the development environment of micromechatronic systems including established as well as cutting-edge microfabrication technologies.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.