This book presents the theory and applications of radiative transfer in the atmosphere. It is written for graduate students and researchers in the fields of meteorology and related sciences. The book begins with important basic definitions of the radiative transfer theory. It presents the hydrodynamic derivation of the radiative transfer equation and the principles of variance. The authors examine in detail various quasi-exact solutions of the radiative transfer equation and give a thorough treatment of the radiative perturbation theory. A rigorous treatment of Mie scattering is given, including Rayleigh scattering as a special case, and the important efficiency factors for extinction, scattering and absorption are derived. The fundamentals of remote sensing applications of radiative transfer are presented. Problems of varying degrees of difficulty are included at the end of each chapter, allowing readers to further their understanding of the materials covered in the book.
Dynamical zeta functions are associated to dynamical systems with a countable set of periodic orbits. The dynamical zeta functions of the geodesic flow of lo cally symmetric spaces of rank one are known also as the generalized Selberg zeta functions. The present book is concerned with these zeta functions from a cohomological point of view. Originally, the Selberg zeta function appeared in the spectral theory of automorphic forms and were suggested by an analogy between Weil's explicit formula for the Riemann zeta function and Selberg's trace formula ([261]). The purpose of the cohomological theory is to understand the analytical properties of the zeta functions on the basis of suitable analogs of the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place of fixed points. This approach is parallel to Weil's idea to analyze the zeta functions of pro jective algebraic varieties over finite fields on the basis of suitable versions of the Lefschetz fixed point formula. The Lefschetz formula formalism shows that the divisors of the rational Hassc-Wcil zeta functions are determined by the spectra of Frobenius operators on l-adic cohomology.
Parabolic geometries encompass a very diverse class of geometric structures, including such important examples as conformal, projective, and almost quaternionic structures, hypersurface type CR-structures and various types of generic distributions. The characteristic feature of parabolic geometries is an equivalent description by a Cartan geometry modeled on a generalized flag manifold (the quotient of a semisimple Lie group by a parabolic subgroup). Background on differential geometry, with a view towards Cartan connections, and on semisimple Lie algebras and their representations, which play a crucial role in the theory, is collected in two introductory chapters. The main part discusses the equivalence between Cartan connections and underlying structures, including a complete proof of Kostant's version of the Bott–Borel–Weil theorem, which is used as an important tool. For many examples, the complete description of the geometry and its basic invariants is worked out in detail. The constructions of correspondence spaces and twistor spaces and analogs of the Fefferman construction are presented both in general and in several examples. The last chapter studies Weyl structures, which provide classes of distinguished connections as well as an equivalent description of the Cartan connection in terms of data associated to the underlying geometry. Several applications are discussed throughout the text.
As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
We introduce a class of multilinear singular integral forms which generalize the Christ-Journe multilinear forms. The research is partially motivated by an approach to Bressan’s problem on incompressible mixing flows. A key aspect of the theory is that the class of operators is closed under adjoints (i.e. the class of multilinear forms is closed under permutations of the entries). This, together with an interpolation, allows us to reduce the boundedness.
The whole range of biocatalysis, from a firm grounding in theoretical concepts to in-depth coverage of practical applications and future perspectives. The book not only covers reactions, products and processes with and from biological catalysts, but also the process of designing and improving such biocatalysts. One unique feature is that the fields of chemistry, biology and bioengineering receive equal attention, thus addressing practitioners and students from all three areas.
Island phenomena are a central topic in generative grammar, especially because of principled exceptions to these general extraction constraints. This volume investigates exceptional extractions from phrasal adjunct islands. It argues, based on experimental studies, that several factors identified in the previous literature are uninformative about locality conditions because they show effects in both extraction and non-extraction sentence forms. The volume develops a multifactorial model to account for these effects without appealing to universal extraction conditions and argues that the relative acceptability of the underlying proposition determines acceptability across sentence types.
Our DMV Seminar on 'Classical Nonintegrability, Quantum Chaos' intended to introduce students and beginning researchers to the techniques applied in nonin tegrable classical and quantum dynamics. Several of these lectures are collected in this volume. The basic phenomenon of nonlinear dynamics is mixing in phase space, lead ing to a positive dynamical entropy and a loss of information about the initial state. The nonlinear motion in phase space gives rise to a linear action on phase space functions which in the case of iterated maps is given by a so-called transfer operator. Good mixing rates lead to a spectral gap for this operator. Similar to the use made of the Riemann zeta function in the investigation of the prime numbers, dynamical zeta functions are now being applied in nonlinear dynamics. In Chapter 2 V. Baladi first introduces dynamical zeta functions and transfer operators, illustrating and motivating these notions with a simple one-dimensional dynamical system. Then she presents a commented list of useful references, helping the newcomer to enter smoothly into this fast-developing field of research. Chapter 3 on irregular scattering and Chapter 4 on quantum chaos by A. Knauf deal with solutions of the Hamilton and the Schr6dinger equation. Scatter ing by a potential force tends to be irregular if three or more scattering centres are present, and a typical phenomenon is the occurrence of a Cantor set of bounded orbits. The presence of this set influences those scattering orbits which come close.
This enduringly popular undergraduate textbook has been thoroughly reworked and updated, and now comprises twelve chapters covering the same breadth of topics as earlier editions, but in a substantially modernized fashion to facilitate classroom teaching. Covering both theoretical and applied aspects of geophysics, clear explanations of the physical principles are blended with step-by-step derivations of the key equations and over 400 explanatory figures to explain the internal structure and properties of the planet, including its petroleum and mineral resources. New topics include the latest data acquisition technologies, such as satellite geophysics, planetary landers, ocean bottom seismometers, and fibre optic methods, as well as recent research developments in ambient noise interferometry, seismic hazard analysis, rheology, and numerical modelling - all illustrated with examples from the scientific literature. Student-friendly features include separate text boxes with auxiliary explanations and advanced topics of interest; reading lists of foundational, alternative, or more detailed resources; end-of-chapter review questions and an increased number of quantitative exercises. Completely new to this edition is the addition of computational exercises in Python, designed to help students acquire important programming skills and develop a more profound understanding of geophysics.
MOST (Media Oriented Systems Transport) is a multimedia network technology developed to enable an efficient transport of streaming, packet and control data in an automobile. It is the communication backbone of an infotainment system in a car. MOST can also be used in other product areas such as driver assistance systems and home applications.
This book presents a step-by-step guide to the basic theory of multivectors and spinors, with a focus on conveying to the reader the geometric understanding of these abstract objects. Following in the footsteps of M. Riesz and L. Ahlfors, the book also explains how Clifford algebra offers the ideal tool for studying spacetime isometries and Möbius maps in arbitrary dimensions. The book carefully develops the basic calculus of multivector fields and differential forms, and highlights novelties in the treatment of, e.g., pullbacks and Stokes’s theorem as compared to standard literature. It touches on recent research areas in analysis and explains how the function spaces of multivector fields are split into complementary subspaces by the natural first-order differential operators, e.g., Hodge splittings and Hardy splittings. Much of the analysis is done on bounded domains in Euclidean space, with a focus on analysis at the boundary. The book also includes a derivation of new Dirac integral equations for solving Maxwell scattering problems, which hold promise for future numerical applications. The last section presents down-to-earth proofs of index theorems for Dirac operators on compact manifolds, one of the most celebrated achievements of 20th-century mathematics. The book is primarily intended for graduate and PhD students of mathematics. It is also recommended for more advanced undergraduate students, as well as researchers in mathematics interested in an introduction to geometric analysis.
This book studies structural properties of Q-curvature from an extrinsic point of view by regarding it as a derived quantity of certain conformally covariant families of differential operators which are associated to hypersurfaces.
This thesis describes a series of investigations designed to assess the value of metalloenzymes in systems for artificial and adapted photosynthesis. The research presented explores the interplay between inherent enzyme properties such as structure, rates and thermodynamics, and the properties of the semiconducting materials to which the enzyme is attached. Author, Andreas Bachmeier provides a comprehensive introduction to the interdisciplinary field of artificial photosynthesis, allowing the reader to grasp the latest approaches being investigated, from molecular systems to heterogeneous surface catalysis. Bachmeier’s work also uses metalloenzymes to highlight the importance of reversible catalysts in removing the burden of poor electrocatalytic rates and efficiencies which are common characteristics for most artificial photosynthesis systems. Overall, this thesis provides newcomers and students in the field with evidence that metalloenzymes can be used to establish new directions in artificial photosynthesis research.
In recent years, the utilization of terpyridines both in macromolecular structure assembly and device chemistry has exploded, enabling, for example, supramolecular polymer architectures with switchable chemical and physical properties as well as novel functional materials for optoelectronic applications such as light-emitting diodes and solar cells. Further applications include the usage of terpyridines and their metal complexes as catalysts for asymmetric organic reactions and, in a biological context, as anti-tumor agents or biolabels. This book covers terpyridine-based materials topics ranging from syntheses, chemistry, and multinuclear metal complexes, right up to functionalized polymers, 3D-architectures, and surfaces. Aimed at materials scientists, (in)organic chemists, polymer chemists, complex chemists, physical chemists, biochemists, and libraries.
Women and men in cinema are imaginary constructs created by filmmakers and their audiences. The film-psychoanalytic approach reveals how movies subliminally influence unconscious reception. On the other hand, the movie is embedded in a cultural tradition: Jean Cocteau's film La Belle et la Bete (1946) takes up the classic motif of the animal groom from the story of Cupid and Psyche in Apuleius' The Golden Ass (originally a tale about the stunning momentum of genuine female desire), liberates it from its baroque educational moral (a girl's virtue and prudence will help her to overcome her sexual fears), and turns it into a boyhood story: inside the ugly rascal there is a good, but relatively boring prince - at least in comparison to the monsters of film history. In the seventy years since it was made, La Belle et la Bete has inspired numerous interpretations and has been employed by theorists of all genres and interests.
An award-winning guide to faster and easier debugging is now updated with the latest tools and techniques. It demystifies one of the toughest aspects of software programming, showing clearly how to discover what caused software failures, and fix them with minimal muss and fuss.
This monograph explores the syntax and information structure of bare argument ellipsis. The study concentrates on stripping, which is identified as a subtype of bare argument ellipsis typically associated with focus sensitive particles or negation. This monograph presents a unified account of stripping located at the syntax-information structure interface and argues for a licensing mechanism which is strongly tied to the focus properties of the construction. Under this view, types of bare argument ellipsis such as stripping and pseudostripping, which have received different treatments in the literature, are shown to be subject to the same licensing mechanism. This analysis is also extended to instances of bare argument ellipsis in embedded contexts, which have received little attention in the literature so far. Integrating theoretical and experimental reasoning, this study presents a series of experiments investigating the extraction, prosody and context properties of stripping and thus arrives at a comprehensive and unified account.
It is remarkable that so much about Lie groups could be packed into this small book. But after reading it, students will be well-prepared to continue with more advanced, graduate-level topics in differential geometry or the theory of Lie groups. The theory of Lie groups involves many areas of mathematics. In this book, Arvanitoyeorgos outlines enough of the prerequisites to get the reader started. He then chooses a path through this rich and diverse theory that aims for an understanding of the geometry of Lie groups and homogeneous spaces. In this way, he avoids the extra detail needed for a thorough discussion of other topics. Lie groups and homogeneous spaces are especially useful to study in geometry, as they provide excellent examples where quantities (such as curvature) are easier to compute. A good understanding of them provides lasting intuition, especially in differential geometry. The book is suitable for advanced undergraduates, graduate students, and research mathematicians interested in differential geometry and neighboring fields, such as topology, harmonic analysis, and mathematical physics.
Beginning with a comprehensive survey of existing semiconductor-based chemical microsensors and microsystems, this book proceeds to describe in detail CMOS technology-based chemical microsensor systems. The benefits of using CMOS technology for developing chemical microsensor systems and, in particular, monolithically integrated sensor systems comprising transducers and associated circuitry are laid out. Several successful realizations of such microsensor systems are presented. First, the fundamentals of the chemical sensing process itself will be elucidated, followed by a short description of microfabrication techniques and the CMOS substrate. Thereafter, a comprehensive overview of semiconductor-based and CMOS-based transducer structures and their applications is given. It is shown that CMOS-technology can be successfully used as platform technology to integrate microtransducers with the necessary driving and signal conditioning circuitry, and, in a next step, to develop monolithic multisensor arrays and fully developed microsystems with on-chip sensor control and standard interfaces. The book concludes with a brief outlook to future developments, such as interfacing cells with CMOS microelectronics.
This textbook is written for graduate students and researchers in meteorology and related sciences. While most meteorological textbooks only present equilibrium thermodynamics, this book also introduces the linear theory of non-equilibrium and provides the necessary background for more advanced studies. The authors start by introducing the equations that describe the basic laws of thermodynamics and entropy and go on to discuss the thermodynamics of blackbody radiation, thermodynamic potentials, and the constitutive equations of irreversible fluxes. Later chapters look at the state functions of ideal gases, thermodynamics of cloud air, heat equations for special adiabatic systems, atmospheric statics, stability, and atmospheric energetics of hydrostatic equilibrium. Each chapter ends with a set of exercises that are designed to help the reader develop a deeper understanding of the subject. Answers to all the exercises are given at the end of the book.
English summary: Founded by Emil Meynen, edited by Andreas Bittmann in Cooperation with: the German Society for Geography, Austrian IGU-National Committee, and the Swiss Association for Geography/ Association Suisse de G�ographie. For over sixty years and in the 31st edition from Franz Steiner Publishers, the Geographic Pocketbook proves itself as a reference work: the clear list of geographic institutions, administrative authorities, organization and geographers in Germany, Austria and Switzerland makes the handbook indispensible for everything concerning geography. It has been updated and furnished with useful register and serves as a compact and reliable source. German description: Begruendet von Emil Meynen, herausgegeben von Andreas Dittmann im Einvernehmen mit: Deutsche Gesellschaft fuer Geographie, �sterreichisches IGU-Nationalkomitee, Verband Geographie Schweiz / Association Suisse de G�ographie Seit ueber 60 Jahren und in der 31. Ausgabe im Franz Steiner Verlag bew�hrt sich das Geographische Taschenbuch als Nachschlagewerk: die uebersichtliche Auflistung geographischer Institutionen, Beh�rden, Organisationen und Geographen und Geographinnen in Deutschland, �sterreich und der Schweiz machen das Handbuch unentbehrlich fuer alle, die sich mit der Geographie befassen. Wieder aktualisiert und mit nuetzlichen Registern versehen, ist es eine kompakte und zuverl�ssige Quelle.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.