This is the third volume in a four-part series on Fluid Dynamics: PART 1: Classical Fluid Dynamics PART 2: Asymptotic Problems of Fluid Dynamics PART 3: Boundary Layers PART 4: Hydrodynamic Stability Theory The series is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The notion of the boundary layer was introduced by Prandtl (1904) to describe thin viscous layers that form on a rigid body surface in high-Reynolds-number flows. Part 3 of this series begins with the classical theory of the boundary-layer flows, including the Blasius boundary layer on a flat plate and the Falkner-Skan solutions for the boundary layer on a wedge surface. However, the main focus is on recent results of the theory that have not been presented in texbooks before. These are based on the so-called "triple-deck theory" that have proved to be invaluable in describing various fluid-dynamic phenomena, including the boundary-layer separation from a rigid body surface.
This is the third volume in a four-part series on Fluid Dynamics: PART 1: Classical Fluid Dynamics PART 2: Asymptotic Problems of Fluid Dynamics PART 3: Boundary Layers PART 4: Hydrodynamic Stability Theory The series is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The notion of the boundary layer was introduced by Prandtl (1904) to describe thin viscous layers that form on a rigid body surface in high-Reynolds-number flows. Part 3 of this series begins with the classical theory of the boundary-layer flows, including the Blasius boundary layer on a flat plate and the Falkner-Skan solutions for the boundary layer on a wedge surface. However, the main focus is on recent results of the theory that have not been presented in texbooks before. These are based on the so-called "triple-deck theory" that have proved to be invaluable in describing various fluid-dynamic phenomena, including the boundary-layer separation from a rigid body surface.
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is devoted to the inviscid incompressible flow theory, with particular focus on two-dimensional potential flows. These can be described in terms of the "complex potential", allowing the full power of the theory of functions of complex variables to be used. We discuss in detail the method of conformal mapping, which is then used to study various flows of interest, including the flows past Joukovskii aerofoils. The final Chapter 4 is concerned with compressible flows of perfect gas, including supersonic flows. Particular attention is given to the theory of characteristics, which is used, for example, to analyse the Prandtl-Meyer flow over a body surface bend and a corner. Significant attention is also devoted to the shock waves. The chapter concludes with analysis of unsteady flows, including the theory of blast waves.
Three centuries of English idioms—their unusual origins and unexpected interpretations To pay through the nose. Raining cats and dogs. By hook or by crook. Curry favor. Drink like a fish. Eat crow. We hear such phrases every day, but this book is the first truly all-encompassing etymological guide to both their meanings and origins. Spanning more than three centuries, Take My Word for It is a fascinating, one-of-a-kind window into the surprisingly short history of idioms in English. Widely known for his studies of word origins, Anatoly Liberman explains more than one thousand idioms, both popular and obscure, occurring in both American and British standard English and including many regional expressions. The origins, and even the precise meaning, of most idioms are often obscure and lost in history. Based on a critical analysis of countless conjectures, with exact, in-depth references (rare in the literature on the subject), Take My Word for It provides not only a large corpus of idiomatic phrases but also a vast bibliography. Detailed indexes and a thesaurus make the content accessible at a glance, and Liberman’s introduction and conclusion add historical dimensions. The result of decades of research by a leading authority, this book is both instructive and absorbing for scholars and general readers, who won’t find another resource as comparable in scope or based on data even remotely as exhaustive.
This book is devoted to the study of the dynamics of rotating bodies with cavities containing liquid. Two basic classes of motions are analyzed: rotation and libration. Cases of complete and partial filling of cavities with ideal liquid and complete filling with viscous liquid are treated. The volume presents a method for obtaining relations betwee
This authoritative first volume provides a solid understanding of modern spacecraft classification, failure, and electrical component requirements. This book focuses on the study of modern spacecraft, including their classification, packaging and protection, design versions, launch failure and accident analysis, and the main requirements of electronic components used. Readers find comprehensive coverage of the design and development of individual components as well as systems, their packaging, and how to make them last in space. This is a useful resource for military and civil applications. Specific topics include: The manufacturing of electronics for space; The main physical mechanisms of the impact of destabilizing factors of outer space, including various kinds of radiation, high-energy galactic icons, and particles of cosmic dust;The design of advanced space-grade microelectronic products such as memory microcircuits, microprocessors, interface and logic of microcircuits and power control microcircuits;Facts and features about the “space race” that have not been available until now.
Distinguished linguistics scholar Anatoly Liberman set out the frame for this volume in An Analytic Dictionary of English Etymology. Here, Liberman's landmark scholarship lay the groundwork for his forthcoming multivolume analytic dictionary of the English language. A Bibliography of English Etymology is a broadly conceptualized reference tool that provides source materials for etymological research. For each word's etymology, there is a bibliographic entry that lists the word origin's primary sources, specifically, where it was first found in use. Featuring the history of more than 13,000 English words, their cognates, and their foreign antonyms, this is a full-fledged compendium of resources indispensable to any scholar of word origins.
This is the second volume in a four-part series on fluid dynamics: Part 1. Classical Fluid Dynamics Part 2. Asymptotic Problems of Fluid Dynamics Part 3. Boundary Layers Part 4. Hydrodynamic Stability Theory The series is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. In Part 2 the reader is introduced to asymptotic methods, and their applications to fluid dynamics. Firstly, it discusses the mathematical aspects of the asymptotic theory. This is followed by an exposition of the results of inviscid flow theory, starting with subsonic flows past thin aerofoils. This includes unsteady flow theory and the analysis of separated flows. The authors then consider supersonic flow past a thin aerofoil, where the linear approximation leads to the Ackeret formula for the pressure. They also discuss the second order Buzemann approximation, and the flow behaviour at large distances from the aerofoil. Then the properties of transonic and hypersonic flows are examined in detail. Part 2 concludes with a discussion of viscous low-Reynolds-number flows. Two classical problems of the low-Reynolds-number flow theory are considered, the flow past a sphere and the flow past a circular cylinder. In both cases the flow analysis leads to a difficulty, known as Stokes paradox. The authors show that this paradox can be resolved using the formalism of matched asymptotic expansions.
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is devoted to the inviscid incompressible flow theory, with particular focus on two-dimensional potential flows. These can be described in terms of the "complex potential", allowing the full power of the theory of functions of complex variables to be used. We discuss in detail the method of conformal mapping, which is then used to study various flows of interest, including the flows past Joukovskii aerofoils. The final Chapter 4 is concerned with compressible flows of perfect gas, including supersonic flows. Particular attention is given to the theory of characteristics, which is used, for example, to analyse the Prandtl-Meyer flow over a body surface bend and a corner. Significant attention is also devoted to the shock waves. The chapter concludes with analysis of unsteady flows, including the theory of blast waves.
This is the fourth volume in a four-part series on fluid dynamics: Part 1. Classical Fluid Dynamics Part 2. Asymptotic Problems of Fluid Dynamics Part 3. Boundary Layers Part 4. Hydrodynamic Stability Theory The series is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. Part 4 is devoted to hydrodynamic stability theory which aims at predicting the conditions under which the laminar state of a flow turns into a turbulent state. The phenomenon of laminar-turbulent transition remains one of the main challenges of modern physics. The resolution of this problem is important not only from a theoretical viewpoint but also for practical applications. For instance, in the flow past a passenger aircraft wing, the laminar-turbulent transition causes a fivefold increase in the viscous drag. The book starts with the classical results of the theory which include the global stability analysis followed by the derivation of the Orr-Sommerfeld equation. The properties of this equation are discussed using, as examples, plane Poiseuille flow and the Blasius boundary layer. In addition, we discuss 'inviscid flow' instability governed by the Rayleigh equation, Kelvin-Helmholtz instability, crossflow instability, and centrifugal instability, taking the form of Taylor-Görtler vortices. However, in this presentation our main attention regards recent developments in the theory. These include linear and nonlinear critical layer theory, the theory of receptivity of the boundary layer to external perturbations, weakly nonlinear stability theory of Landau and Stuart, and vortex-wave interaction theory. The latter allows us to describe self-sustaining nonlinear perturbations within a viscous fluid.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.