Residue number systems (RNSs) and arithmetic are useful for several reasons. First, a great deal of computing now takes place in embedded processors, such as those found in mobile devices, for which high speed and low-power consumption are critical; the absence of carry propagation facilitates the realization of high-speed, low-power arithmetic. Second, computer chips are now getting to be so dense that full testing will no longer be possible; so fault tolerance and the general area of computational integrity have become more important. RNSs are extremely good for applications such as digital signal processing, communications engineering, computer security (cryptography), image processing, speech processing, and transforms, all of which are extremely important in computing today. This book provides an up-to-date account of RNSs and arithmetic. It covers the underlying mathematical concepts of RNSs; the conversion between conventional number systems and RNSs; the implementation of arithmetic operations; various related applications are also introduced. In addition, numerous detailed examples and analysis of different implementations are provided. Sample Chapter(s). Chapter 1: Introduction (301 KB). Contents: Introduction; Mathematical Fundamentals; Forward Conversion; Addition; Multiplication; Comparison, Overflow-Detection, Sign-Determination, Scaling, and Division; Reverse Conversion; Applications. Readership: Graduate students, academics and researchers in computer engineering and electrical & electronic engineering.
Modern cryptosystems, used in numerous applications that require secrecy or privacy - electronic mail, financial transactions, medical-record keeping, government affairs, social media etc. - are based on sophisticated mathematics and algorithms that in implementation involve much computer arithmetic. And for speed it is necessary that the arithmetic be realized at the hardware (chip) level. This book is an introduction to the implementation of cryptosystems at that level. The aforementioned arithmetic is mostly the arithmetic of finite fields, and the book is essentially one on the arithmetic of prime fields and binary fields in the context of cryptography. The book has three main parts. The first part is on generic algorithms and hardware architectures for the basic arithmetic operations: addition, subtraction, multiplication, and division. The second part is on the arithmetic of prime fields. And the third part is on the arithmetic of binary fields. The mathematical fundamentals necessary for the latter two parts are included, as are descriptions of various types of cryptosystems, to provide appropriate context. This book is intended for advanced-level students in Computer Science, Computer Engineering, and Electrical and Electronic Engineering. Practitioners too will find it useful, as will those with a general interest in "hard" applications of mathematics.
Computer-Hardware Evaluation of Mathematical Functions provides a thorough up-to-date understanding of the methods used in computer hardware for the evaluation of mathematical functions: reciprocals, square-roots, exponentials, logarithms, trigonometric functions, hyperbolic functions, etc. It discusses how the methods are derived, how they work, and how well they work. The methods are divided into four core themes: CORDIC, normalization, table look-up, and polynomial approximations. In each case, the author carefully considers the mathematical derivation and basis of the relevant methods, how effective they are (including mathematical errors analysis), and how they can be implemented in hardware.This book is an excellent resource for any student or researcher seeking a comprehensive, yet easily understandable, explanation of how computer chips evaluate mathematical functions.
This book is intended to serve as a textbook for a second course in the im plementation (Le. microarchitecture) of computer architectures. The subject matter covered is the collection of techniques that are used to achieve the highest performance in single-processor machines; these techniques center the exploitation of low-level parallelism (temporal and spatial) in the processing of machine instructions. The target audience consists students in the final year of an undergraduate program or in the first year of a postgraduate program in computer science, computer engineering, or electrical engineering; professional computer designers will also also find the book useful as an introduction to the topics covered. Typically, the author has used the material presented here as the basis of a full-semester undergraduate course or a half-semester post graduate course, with the other half of the latter devoted to multiple-processor machines. The background assumed of the reader is a good first course in computer architecture and implementation - to the level in, say, Computer Organization and Design, by D. Patterson and H. Hennessy - and familiarity with digital-logic design. The book consists of eight chapters: The first chapter is an introduction to all of the main ideas that the following chapters cover in detail: the topics covered are the main forms of pipelining used in high-performance uniprocessors, a taxonomy of the space of pipelined processors, and performance issues. It is also intended that this chapter should be readable as a brief "stand-alone" survey.
This book constitutes the refereed proceedings of the 8th Asia-Pacific Computer Systems Architecture Conference, ACSAC 2003, held in Aizu-Wakamatsu, Japan in September 2003. The 23 revised full papers presented together with 8 invited papers were carefully reviewed and selected from 30 submissions. The papers are organized in topical sections on processor architectures and innovative microarchitectures, parallel computer architectures and computation models, reconfigurable architectures, computer arithmetic, cache and memory architectures, and interconnection networks and network interfaces.
Modern cryptosystems, used in numerous applications that require secrecy or privacy - electronic mail, financial transactions, medical-record keeping, government affairs, social media etc. - are based on sophisticated mathematics and algorithms that in implementation involve much computer arithmetic. And for speed it is necessary that the arithmetic be realized at the hardware (chip) level. This book is an introduction to the implementation of cryptosystems at that level. The aforementioned arithmetic is mostly the arithmetic of finite fields, and the book is essentially one on the arithmetic of prime fields and binary fields in the context of cryptography. The book has three main parts. The first part is on generic algorithms and hardware architectures for the basic arithmetic operations: addition, subtraction, multiplication, and division. The second part is on the arithmetic of prime fields. And the third part is on the arithmetic of binary fields. The mathematical fundamentals necessary for the latter two parts are included, as are descriptions of various types of cryptosystems, to provide appropriate context. This book is intended for advanced-level students in Computer Science, Computer Engineering, and Electrical and Electronic Engineering. Practitioners too will find it useful, as will those with a general interest in "hard" applications of mathematics.
Computer-Hardware Evaluation of Mathematical Functions provides a thorough up-to-date understanding of the methods used in computer hardware for the evaluation of mathematical functions: reciprocals, square-roots, exponentials, logarithms, trigonometric functions, hyperbolic functions, etc. It discusses how the methods are derived, how they work, and how well they work. The methods are divided into four core themes: CORDIC, normalization, table look-up, and polynomial approximations. In each case, the author carefully considers the mathematical derivation and basis of the relevant methods, how effective they are (including mathematical errors analysis), and how they can be implemented in hardware.This book is an excellent resource for any student or researcher seeking a comprehensive, yet easily understandable, explanation of how computer chips evaluate mathematical functions.
Residue number systems (RNSs) and arithmetic are useful for several reasons. First, a great deal of computing now takes place in embedded processors, such as those found in mobile devices, for which high speed and low-power consumption are critical; the absence of carry propagation facilitates the realization of high-speed, low-power arithmetic. Second, computer chips are now getting to be so dense that full testing will no longer be possible; so fault tolerance and the general area of computational integrity have become more important. RNSs are extremely good for applications such as digital signal processing, communications engineering, computer security (cryptography), image processing, speech processing, and transforms, all of which are extremely important in computing today.This book provides an up-to-date account of RNSs and arithmetic. It covers the underlying mathematical concepts of RNSs; the conversion between conventional number systems and RNSs; the implementation of arithmetic operations; various related applications are also introduced. In addition, numerous detailed examples and analysis of different implementations are provided.
This book is intended to serve as a textbook for a second course in the im plementation (Le. microarchitecture) of computer architectures. The subject matter covered is the collection of techniques that are used to achieve the highest performance in single-processor machines; these techniques center the exploitation of low-level parallelism (temporal and spatial) in the processing of machine instructions. The target audience consists students in the final year of an undergraduate program or in the first year of a postgraduate program in computer science, computer engineering, or electrical engineering; professional computer designers will also also find the book useful as an introduction to the topics covered. Typically, the author has used the material presented here as the basis of a full-semester undergraduate course or a half-semester post graduate course, with the other half of the latter devoted to multiple-processor machines. The background assumed of the reader is a good first course in computer architecture and implementation - to the level in, say, Computer Organization and Design, by D. Patterson and H. Hennessy - and familiarity with digital-logic design. The book consists of eight chapters: The first chapter is an introduction to all of the main ideas that the following chapters cover in detail: the topics covered are the main forms of pipelining used in high-performance uniprocessors, a taxonomy of the space of pipelined processors, and performance issues. It is also intended that this chapter should be readable as a brief "stand-alone" survey.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.