This challenging book argues that a new way of speaking of mathematics and describing it emerged at the end of the 16th century. Leading mathematicians began referring to their field in terms drawn from the exploration accounts of Columbus and Magellan. Many of those who promoted the vision of mathematics as heroic exploration also played central roles in developing the most important mathematical innovation of the period?the infinitesimal methods, which the author shows was no coincidence.
In the fog of a Paris dawn in 1832, variste Galois, the 20-year-old founder of modern algebra, was shot and killed in a duel. That gunshot, suggests Amir Alexander, marked the end of one era in mathematics and the beginning of another. Arguing that not even the purest mathematics can be separated from its cultural background, Alexander shows how popular stories about mathematicians are really morality tales about their craft as it relates to the world. In the eighteenth century, Alexander says, mathematicians were idealized as child-like, eternally curious, and uniquely suited to reveal the hidden harmonies of the world. But in the nineteenth century, brilliant mathematicians like Galois became Romantic heroes like poets, artists, and musicians. The ideal mathematician was now an alienated loner, driven to despondency by an uncomprehending world. A field that had been focused on the natural world now sought to create its own reality. Higher mathematics became a world unto itselfÑpure and governed solely by the laws of reason. In this strikingly original book that takes us from Paris to St. Petersburg, Norway to Transylvania, Alexander introduces us to national heroes and outcasts, innocents, swindlers, and martyrsÐall uncommonly gifted creators of modern mathematics.
The surprising history behind a ubiquitous facet of the United States: the gridded landscape. Seen from an airplane, much of the United States appears to be a gridded land of startling uniformity. Perpendicular streets and rectangular fields, all precisely measured and perfectly aligned, turn both urban and rural America into a checkerboard landscape that stretches from horizon to horizon. In evidence throughout the country, but especially the West, the pattern is a hallmark of American life. One might consider it an administrative convenience--an easy way to divide land and lay down streets--but it is not. The colossal grid carved into the North American continent, argues historian and writer Amir Alexander, is a plan redolent with philosophical and political meaning. In 1784 Thomas Jefferson presented Congress with an audacious scheme to reshape the territory of the young United States. All western lands, he proposed, would be inscribed with a single rectilinear grid, transforming the natural landscape into a mathematical one. Following Isaac Newton and John Locke, he viewed mathematical space as a blank slate on which anything is possible and where new Americans, acting freely, could find liberty. And if the real America, with its diverse landscapes and rich human history, did not match his vision, then it must be made to match it. From the halls of Congress to the open prairies, and from the fight against George III to the Trail of Tears, Liberty's Grid tells the story of the battle between grid makers and their opponents. When Congress endorsed Jefferson's plan, it set off a struggle over American space that has not subsided. Transcendentalists, urban reformers, and conservationists saw the grid not as a place of possibility but as an artificial imposition that crushed the human spirit. Today, the ideas Jefferson associated with the grid still echo through political rhetoric about the country's founding, and competing visions for the nation are visible from Manhattan avenues and Kansan pastures to Yosemite's cliffs and suburbia's cul-de-sacs. An engrossing read, Liberty's Grid offers a powerful look at the ideological conflict written on the landscape.
This challenging book argues that a new way of speaking of mathematics and describing it emerged at the end of the 16th century. Leading mathematicians began referring to their field in terms drawn from the exploration accounts of Columbus and Magellan. Many of those who promoted the vision of mathematics as heroic exploration also played central roles in developing the most important mathematical innovation of the period?the infinitesimal methods, which the author shows was no coincidence.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.