It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.
The modern wireless communication industry has put great demands on circuit designers for smaller, cheaper transceivers in the gigahertz frequency range. One tool which has assisted designers in satisfying these requirements is the use of on-chip inductiveelements (inductors and transformers) in silicon (Si) radio-frequency (RF) integrated circuits (ICs). These elements allow greatly improved levels of performance in Si monolithic low-noise amplifiers, power amplifiers, up-conversion and down-conversion mixers and local oscillators. Inductors can be used to improve the intermodulation distortion performance and noise figure of small-signal amplifiers and mixers. In addition, the gain of amplifier stages can be enhanced and the realization of low-cost on-chip local oscillators with good phase noise characteristics is made feasible. In order to reap these benefits, it is essential that the IC designer be able to predict and optimize the characteristics of on-chip inductiveelements. Accurate knowledge of inductance values, quality factor (Q) and the influence of ad- cent elements (on-chip proximity effects) and substrate losses is essential. In this book the analysis, modeling and application of on-chip inductive elements is considered. Using analyses based on Maxwells equations, an accurate and efficient technique is developed to model these elements over a wide frequency range. Energy loss to the conductive substrate is modeled through several mechanisms, including electrically induced displacement and conductive c- rents and by magnetically induced eddy currents. These techniques have been compiled in a user-friendly software tool ASITIC (Analysis and Simulation of Inductors and Transformers for Integrated Circuits).
Conventional MRI has several limitations such as long scan durations, motion artifacts, very loud acoustic noise, signal loss due to short relaxation times, and RF induced heating of electrically conducting objects. The goals of this work are to evaluate and improve the state-of-the-art methods for MRI of tissue with short T?, to prove the feasibility of in vivo Concurrent Excitation and Acquisition, and to introduce simultaneous electroglottography measurement during functional lung MRI.
This comprehensive guide to agricultural robots is the ideal companion for any student or professional engineer looking to understand and develop autonomous vehicles to use on the modern farm. With world hunger one of the modern era’s most pressing issues, autonomous agricultural vehicles are a key tool in tackling this problem. Smart farming can increase total factory productivity through designing autonomous vehicles based on specific needs, in addition to implementing smart systems into day-to-day operations. This book provides step-by-step guidance, from the theory behind autonomous vehicles, through to the design process and manufacture. Detailing all components of an autonomous agricultural vehicle, from sensors, controlling algorithms, communication and controlling units, the book covers topics such as artificial intelligence and machine learning. It also includes case studies, and a detailed guide to international policymaking in recent years. Suitable for students and professionals alike, this book will be a key companion to those interested in agricultural engineering, autonomous vehicles, robotics, and mechatronics, in mechanical, automotive, and electrical engineering.
Over the past decade, tremendous development of Wireless Communications has changed human life and engineering. Considerable advancement has been made in design and architecture of related RF and microwave circuits. Introduction to Wireless Communication Circuits focusses on special circuits dedicated to the RF level of wireless communications. From oscillators to modulation and demodulation, and from mixers to RF and power amplifier circuits, all are presented in a sequential manner. A wealth of analytical relations is provided in the text alongside various worked out examples. Related problem sets are given at the end of each chapter. Basic concepts of RF Analog Circuit Design are developed in the book.
Modern communications technology demands smaller, faster and more efficient circuits. This book reviews the fundamentals of electromagnetism in passive and active circuit elements, highlighting various effects and potential problems in designing a new circuit. The author begins with a review of the basics - the origin of resistance, capacitance, and inductance - then progresses to more advanced topics such as passive device design and layout, resonant circuits, impedance matching, high-speed switching circuits, and parasitic coupling and isolation techniques. Using examples and applications in RF and microwave systems, the author describes transmission lines, transformers, and distributed circuits. State-of-the-art developments in Si based broadband analog, RF, microwave, and mm-wave circuits are reviewed. With up-to-date results, techniques, practical examples, illustrations and worked examples, this book will be valuable to advanced undergraduate and graduate students of electrical engineering, and practitioners in the IC design industry. Further resources for this title are available at www.cambridge.org/9780521853507.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.