The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The abstract results apply to a large variety of problems. Thus, the well-known Benjamin-Bona-Mahony-Burgers equation and Rosenau-Burgers equations with sources and many other physical problems are considered as examples. Moreover, the method proposed for studying blow-up phenomena for nonlinear Sobolev-type equations is applied to equations which play an important role in physics. For instance, several examples describe different electrical breakdown mechanisms in crystal semiconductors, as well as the breakdown in the presence of sources of free charges in a self-consistent electric field. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature.
The present book carefully studies the blow-up phenomenon of solutions to partial differential equations, including many equations of mathematical physics. The included material is based on lectures read by the authors at the Lomonosov Moscow State University, and the book is addressed to a wide range of researchers and graduate students working in nonlinear partial differential equations, nonlinear functional analysis, and mathematical physics. Contents Nonlinear capacity method of S. I. Pokhozhaev Method of self-similar solutions of V. A. Galaktionov Method of test functions in combination with method of nonlinear capacity Energy method of H. A. Levine Energy method of G. Todorova Energy method of S. I. Pokhozhaev Energy method of V. K. Kalantarov and O. A. Ladyzhenskaya Energy method of M. O. Korpusov and A. G. Sveshnikov Nonlinear Schrödinger equation Variational method of L. E. Payne and D. H. Sattinger Breaking of solutions of wave equations Auxiliary and additional results
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.