This book is dedicated to the qualitative theory of the stochastic one-dimensional Burgers equation with small viscosity under periodic boundary conditions and to interpreting the obtained results in terms of one-dimensional turbulence in a fictitious one-dimensional fluid described by the Burgers equation. The properties of one-dimensional turbulence which we rigorously derive are then compared with the heuristic Kolmogorov theory of hydrodynamical turbulence, known as the K41 theory. It is shown, in particular, that these properties imply natural one-dimensional analogues of three principal laws of the K41 theory: the size of the Kolmogorov inner scale, the 2/3 2/3-law, and the Kolmogorov–Obukhov law. The first part of the book deals with the stochastic Burgers equation, including the inviscid limit for the equation, its asymptotic in time behavior, and a theory of generalised L 1 L1-solutions. This section makes a self-consistent introduction to stochastic PDEs. The relative simplicity of the model allows us to present in a light form many of the main ideas from the general theory of this field. The second part, dedicated to the relation of one-dimensional turbulence with the K41 theory, could serve for a mathematical reader as a rigorous introduction to the literature on hydrodynamical turbulence, all of which is written on a physical level of rigor.
This book is dedicated to the qualitative theory of the stochastic one-dimensional Burgers equation with small viscosity under periodic boundary conditions and to interpreting the obtained results in terms of one-dimensional turbulence in a fictitious one-dimensional fluid described by the Burgers equation. The properties of one-dimensional turbulence which we rigorously derive are then compared with the heuristic Kolmogorov theory of hydrodynamical turbulence, known as the K41 theory. It is shown, in particular, that these properties imply natural one-dimensional analogues of three principal laws of the K41 theory: the size of the Kolmogorov inner scale, the 2/3 2/3-law, and the Kolmogorov–Obukhov law. The first part of the book deals with the stochastic Burgers equation, including the inviscid limit for the equation, its asymptotic in time behavior, and a theory of generalised L 1 L1-solutions. This section makes a self-consistent introduction to stochastic PDEs. The relative simplicity of the model allows us to present in a light form many of the main ideas from the general theory of this field. The second part, dedicated to the relation of one-dimensional turbulence with the K41 theory, could serve for a mathematical reader as a rigorous introduction to the literature on hydrodynamical turbulence, all of which is written on a physical level of rigor.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.