This book gives an exposition of the exciting field of control of oscillatory and chaotic systems, which has numerous potential applications in mechanics, laser and chemical technologies, communications, biology and medicine, economics, ecology, etc.A novelty of the book is its systematic application of modern nonlinear and adaptive control theory to the new class of problems. The proposed control design methods are based on the concepts of Lyapunov functions, Poincare maps, speed-gradient and gradient algorithms. The conditions which ensure such control goals as an excitation or suppression of oscillations, synchronization and transformation from chaotic mode to the periodic one or vice versa, are established. The performance and robustness of control systems under disturbances and uncertainties are evaluated.The described methods and algorithms are illustrated by a number of examples, including classical models of oscillatory and chaotic systems: coupled pendula, brusselator, Lorenz, Van der Pol, Duffing, Henon and Chua systems. Practical examples from different fields of science and technology such as communications, growth of thin films, synchronization of chaotic generators based on tunnel diods, stabilization of swings in power systems, increasing predictability of business-cycles are also presented.The book includes many results on nonlinear and adaptive control published previously in Russian and therefore were not known to the West.Researchers, teachers and graduate students in the fields of electrical and mechanical engineering, physics, chemistry, biology, economics will find this book most useful. Applied mathematicians and control engineers from various fields of technology dealing with complex oscillatory systems will also benefit from it.
We present an improved and enlarged version of our book Nonlinear - namics of Chaotic and Stochastic Systems published by Springer in 2002. Basically, the new edition of the book corresponds to its ?rst version. While preparingthiseditionwemadesomeclari?cationsinseveralsectionsandalso corrected the misprints noticed in some formulas. Besides, three new sections have been added to Chapter 2. They are “Statistical Properties of Dynamical Chaos,” “E?ects of Synchronization in Extended Self-Sustained Oscillatory Systems,” and “Synchronization in Living Systems.” The sections indicated re?ect the most interesting results obtained by the authors after publication of the ?rst edition. We hope that the new edition of the book will be of great interest for a widesectionofreaderswhoarealreadyspecialistsorthosewhoarebeginning research in the ?elds of nonlinear oscillation and wave theory, dynamical chaos, synchronization, and stochastic process theory. Saratov, Berlin, and St. Louis V.S. Anishchenko November 2006 A.B. Neiman T.E. Vadiavasova V.V. Astakhov L. Schimansky-Geier Preface to the First Edition Thisbookisdevotedtotheclassicalbackgroundandtocontemporaryresults on nonlinear dynamics of deterministic and stochastic systems. Considerable attentionisgiventothee?ectsofnoiseonvariousregimesofdynamicsystems with noise-induced order. On the one hand, there exists a rich literature of excellent books on n- linear dynamics and chaos; on the other hand, there are many marvelous monographs and textbooks on the statistical physics of far-from-equilibrium andstochasticprocesses.Thisbookisanattempttocombinetheapproachof nonlinear dynamics based on the deterministic evolution equations with the approach of statistical physics based on stochastic or kinetic equations. One of our main aims is to show the important role of noise in the organization and properties of dynamic regimes of nonlinear dissipative systems.
This book gives an exposition of the exciting field of control of oscillatory and chaotic systems, which has numerous potential applications in mechanics, laser and chemical technologies, communications, biology and medicine, economics, ecology, etc.A novelty of the book is its systematic application of modern nonlinear and adaptive control theory to the new class of problems. The proposed control design methods are based on the concepts of Lyapunov functions, Poincare maps, speed-gradient and gradient algorithms. The conditions which ensure such control goals as an excitation or suppression of oscillations, synchronization and transformation from chaotic mode to the periodic one or vice versa, are established. The performance and robustness of control systems under disturbances and uncertainties are evaluated.The described methods and algorithms are illustrated by a number of examples, including classical models of oscillatory and chaotic systems: coupled pendula, brusselator, Lorenz, Van der Pol, Duffing, Henon and Chua systems. Practical examples from different fields of science and technology such as communications, growth of thin films, synchronization of chaotic generators based on tunnel diods, stabilization of swings in power systems, increasing predictability of business-cycles are also presented.The book includes many results on nonlinear and adaptive control published previously in Russian and therefore were not known to the West.Researchers, teachers and graduate students in the fields of electrical and mechanical engineering, physics, chemistry, biology, economics will find this book most useful. Applied mathematicians and control engineers from various fields of technology dealing with complex oscillatory systems will also benefit from it.
This book gives an exposition of the exciting field of control of oscillatory and chaotic systems, which has numerous potential applications in mechanics, laser and chemical technologies, communications, biology and medicine, economics, ecology, etc.A novelty of the book is its systematic application of modern nonlinear and adaptive control theory to the new class of problems. The proposed control design methods are based on the concepts of Lyapunov functions, Poincare maps, speed-gradient and gradient algorithms. The conditions which ensure such control goals as an excitation or suppression of oscillations, synchronization and transformation from chaotic mode to the periodic one or vice versa, are established. The performance and robustness of control systems under disturbances and uncertainties are evaluated.The described methods and algorithms are illustrated by a number of examples, including classical models of oscillatory and chaotic systems: coupled pendula, brusselator, Lorenz, Van der Pol, Duffing, Henon and Chua systems. Practical examples from different fields of science and technology such as communications, growth of thin films, synchronization of chaotic generators based on tunnel diods, stabilization of swings in power systems, increasing predictability of business-cycles are also presented.The book includes many results on nonlinear and adaptive control published previously in Russian and therefore were not known to the West.Researchers, teachers and graduate students in the fields of electrical and mechanical engineering, physics, chemistry, biology, economics will find this book most useful. Applied mathematicians and control engineers from various fields of technology dealing with complex oscillatory systems will also benefit from it.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.