Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory. This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. Reviews the whole field from the beginning to today Includes practical applications Provides classical and modern (semi-analytical) solutions
This book analyzes various properties and structures of ice from the point of view to solve problems in civil aviation. The Arctic zone of the Russian Federation, together with large territories of Siberia and the Far East, is a zone, that is insufficiently provided with ground navigation facilities, as well as platforms and airfields for landing aircraft, including in the event of unpredictable situations. However, most of this area, especially in winter, is covered with ice, which can be used to solve this problem. The possibility of using ice sheets for the construction of airfields or the location of ground-based flight support facilities requires careful study and analysis. This book is devoted to the study of the properties and structure of ice, with a view for use in civil aviation to construct ice airfields and the placement of ground-based flight support facilities.
This volume provides a comprehensive introduction to the modern theory of differential-operator and kinetic models including Vlasov-Maxwell, Fredholm, Lyapunov-Schmidt branching equations to name a few. This book will bridge the gap in the considerable body of existing academic literature on the analytical methods used in studies of complex behavior of differential-operator equations and kinetic models. This monograph will be of interest to mathematicians, physicists and engineers interested in the theory of such non-standard systems.
By the end of the 1970s, crystalline lasers were widely used in science, engineering, medicine, and technology. The types of lasers used have continued to grow in number to include newly discovered crystalline hosts, previously known compounds generating at other spectral wavelengths, and broadband tunable stimulated emission. This has led to the creation of an extremely promising new generation of crystalline lasers that are both highly efficient and more reliable. The major part of this book is devoted to describing multilevel operating laser schemes for stimulated emission excitation in insulating crystals doped with lanthanide ions. The first part of Crystalline Lasers deals with the history of the physics and spectroscopy of insulating laser crystals. The chapters in the second part of the book present results from the study of Stark-energy levels of generating ions in laser crystals and their radiative and nonradiative intermanifold transition characteristics. This section includes extensive tabular data and reference information. Popular and novel operating schemes of crystalline lasers are covered in Part 3. In the chapters in the fourth part of the book, the newest technologies in the physics and engineering of crystalline lasers are considered. The results of investigations into laser action under selective excitations, miniature crystalline lasers, and the properties of nonlinear activated laser crystals are presented and analyzed. Crystalline Lasers summarizes and reviews the results of many years of research and studies of activator ions and multilevel operating laser schemes, and discusses exciting prospects of using these systems to create new types of crystalline lasers. This book will be of use to laser scientists and engineers, physicists, and chemical engineers.
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.
Based on extensive archival research in Russia, India, and Uzbekistan, and containing much source material translated from Russian, Russian Rule in Samarkand uses a comparative approach to examine the structures, personnel, and ideologies of Russian rule in Turkestan, taking Samarkand and the surrounding region as a case-study.
Odessa, 1941-1944 is a comprehensive study of the Romanian administration in Odessa and Transnistria during World War II. It draws a sharp contrast between occupation policies in Odessa and Transnistria, under Romanian administration, and those of Nazi-occupied areas of the Soviet Union. Originally prepared as a Rand Corporation report, it is essential reading for anyone interested in the occupation of Soviet territory during World War II and its consequences.Alexander Dallin provides a detailed study of the Romanian administration in Transnistria, illustrating important aspects of the development of this Soviet territory after the removal of the Communist system. Dallin argues that “ The absence of terror and forced labor, and greater opportunities for self-expression, both economic and cultural, go far to explain the overwhelming popular preference for Romanian over German rule.” A noted expert in Soviet history, Alexander Dallin (1924-2000) was a former president of the American Association for the Advancement of Slavic Studies and professor emeritus at Stanford University in California. The book includes an introduction by Larry L. Watts, an American specialist on Romania during World War II.
This book is based on the method of operator identities and related theory of S-nodes, both developed by Lev Sakhnovich. The notion of the transfer matrix function generated by the S-node plays an essential role. The authors present fundamental solutions of various important systems of differential equations using the transfer matrix function, that is, either directly in the form of the transfer matrix function or via the representation in this form of the corresponding Darboux matrix, when Bäcklund–Darboux transformations and explicit solutions are considered. The transfer matrix function representation of the fundamental solution yields solution of an inverse problem, namely, the problem to recover system from its Weyl function. Weyl theories of selfadjoint and skew-selfadjoint Dirac systems, related canonical systems, discrete Dirac systems, system auxiliary to the N-wave equation and a system rationally depending on the spectral parameter are obtained in this way. The results on direct and inverse problems are applied in turn to the study of the initial-boundary value problems for integrable (nonlinear) wave equations via inverse spectral transformation method. Evolution of the Weyl function and solution of the initial-boundary value problem in a semi-strip are derived for many important nonlinear equations. Some uniqueness and global existence results are also proved in detail using evolution formulas. The reading of the book requires only some basic knowledge of linear algebra, calculus and operator theory from the standard university courses.
British Psychology Society Textbook of the Year 2020 Why do people who are more socially connected live longer and have better health than those who are socially isolated? Why are social ties at least as good for your health as not smoking, having a good diet, and taking regular exercise? Why is treatment more effective when there is an alliance between therapist and client? Until now, researchers and practitioners have lacked a strong theoretical foundation for answering such questions. This ground-breaking book fills this gap by showing how social identity processes are key to understanding and effectively managing a broad range of health-related problems. Integrating a wealth of evidence that the authors and colleagues around the world have built up over the last decade, The New Psychology of Health provides a powerful framework for reconceptualising the psychological dimensions of a range of conditions – including stress, trauma, ageing, depression, addiction, eating behaviour, brain injury, and pain. Alongside reviews of current approaches to these various issues, each chapter provides an in-depth analysis of the ways in which theory and practice can be enriched by attention to social identity processes. Here the authors show not only how an array of social and structural factors shape health outcomes through their impact on group life, but also how this analysis can be harnessed to promote the delivery of ‘social cures’ in a range of fields. This is a must-have volume for service providers, practitioners, students, and researchers working in a wide range of disciplines and fields, and will also be essential reading for anyone whose goal it is to improve the health and well-being of people and communities in their care.
“Human Biogeography, is an outstanding publication that serves as an unrivaled synthesis and nexus of two disciplines – human diversity and biogeography.” --Mark Lomolino, co-author of Biogeography “This is the first book to explain and illustrate what human biogeography is all about. Moreover, Human Biogeography gives us a highly persuasive demonstration that anyone looking for answers about our diversity as a species and our impact on the planet must take biogeography into account. An outstanding work of scholarship supported by an immense depth and breadth of knowledge. ” --John Edward Terrell, Regenstein Curator of Pacific Anthropology, Field Museum of Natural History
The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The abstract results apply to a large variety of problems. Thus, the well-known Benjamin-Bona-Mahony-Burgers equation and Rosenau-Burgers equations with sources and many other physical problems are considered as examples. Moreover, the method proposed for studying blow-up phenomena for nonlinear Sobolev-type equations is applied to equations which play an important role in physics. For instance, several examples describe different electrical breakdown mechanisms in crystal semiconductors, as well as the breakdown in the presence of sources of free charges in a self-consistent electric field. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature.
The book is devoted to the study of the correlation effects in many-particle systems. It presents the advanced methods of quantum statistical mechanics (equilibrium and nonequilibrium), and shows their effectiveness and operational ability in applications to problems of quantum solid-state theory, quantum theory of magnetism and the kinetic theory. The book includes description of the fundamental concepts and techniques of analysis following the approach of N N Bogoliubov's school, including recent developments. It provides an overview that introduces the main notions of quantum many-particle physics with the emphasis on concepts and models.This book combines the features of textbook and research monograph. For many topics the aim is to start from the beginning and to guide the reader to the threshold of advanced researches. Many chapters include also additional information and discuss many complex research areas which are not often discussed in other places. The book is useful for established researchers to organize and present the advanced material disseminated in the literature. The book contains also an extensive bibliography.The book serves undergraduate, graduate and postgraduate students, as well as researchers who have had prior experience with the subject matter at a more elementary level or have used other many-particle techniques.
Modern air and space craft demand a huge variety of sensing elements for detecting and controlling their behavior and operation. These sensors often differ significantly from those designed for applications in automobile, ship, railway, and other forms of transportation, and those used in industrial, chemical, medical, and other areas. This book offers insight into an appropriate selection of these sensors and describes their principles of operation, design, and achievable performance along with particulars of their construction. Drawn from the activities of the International Federation of Automatic Control (IFAC), especially its Aerospace Technical Committee, the book provides details on the majority of sensors for aircraft and many for spacecraft, satellites, and space probes. It is written by an international team of twelve authors representing four countries from Eastern and Western Europe and North America, all with considerable experience in aerospace sensor and systems design. Highlights include: • coverage of aerospace vehicle classification, specific design criteria, and the requirements of onboard systems and sensors; • reviews of airborne flight parameter sensors, weather sensors and collision avoidance devices; • discussions on the important role of inertial navigation systems (INS) and separate gyroscopic sensors for aerospace vehicle navigation and motion control; • descriptions of engine parameter information collection systems, including fuel quantity and consumption sensors, pressure pick-ups, tachometers, vibration control, and temperature sensors; and • descriptions and examples of sensor integration.
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions
This volume provides a comprehensive introduction to the modern theory of differential-operator and kinetic models including Vlasov-Maxwell, Fredholm, Lyapunov-Schmidt branching equations to name a few. This book will bridge the gap in the considerable body of existing academic literature on the analytical methods used in studies of complex behavior of differential-operator equations and kinetic models. This monograph will be of interest to mathematicians, physicists and engineers interested in the theory of such non-standard systems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.