A billiard is a dynamical system in which a point particle alternates between free motion and specular reflections from the boundary of a domain. Exterior Billiards presents billiards in the complement of domains and their applications in aerodynamics and geometrical optics. This book distinguishes itself from existing literature by presenting billiard dynamics outside bounded domains, including scattering, resistance, invisibility and retro-reflection. It begins with an overview of the mathematical notations used throughout the book and a brief review of the main results. Chapters 2 and 3 are focused on problems of minimal resistance and Newton’s problem in media with positive temperature. In chapters 4 and 5, scattering of billiards by nonconvex and rough domains is characterized and some related special problems of optimal mass transportation are studied. Applications in aerodynamics are addressed next and problems of invisibility and retro-reflection within the framework of geometric optics conclude the text. The book will appeal to mathematicians working in dynamical systems and calculus of variations. Specialists working in the areas of applications discussed will also find it useful.
Most histories of Soviet cinema portray the 1970s as a period of stagnation with the gradual decline of the film industry. This book, however, examines Soviet film and television of the era as mature industries articulating diverse cultural values via new genre models. During the 1970s, Soviet cinema and television developed a parallel system of genres where television texts celebrated conservative consensus while films manifested symptoms of ideological and social crises. The book examines the genres of state-sponsored epic films, police procedural, comedy and melodrama, and outlines how television gradually emerged as the major form of Russo-Soviet popular culture. Through close analysis of well-known film classics of the period as well as less familiar films and television series, this groundbreaking work helps to deconstruct the myth of this era as a time of cultural and economic stagnation and also helps us to understand the persistence of this myth in the collective memory of Putin-era Russia. This monograph is the first book-length English-language study of film and television genres of the late Soviet era.
This book, the result of the authors’ long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them. The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book’s most distinctive features is that the majority of the statements proved here are in the form of criteria. The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematics and prospective students.
This book is dedicated to the systematization and development of models, methods, and algorithms for queuing systems with correlated arrivals. After first setting up the basic tools needed for the study of queuing theory, the authors concentrate on complicated systems: multi-server systems with phase type distribution of service time or single-server queues with arbitrary distribution of service time or semi-Markovian service. They pay special attention to practically important retrial queues, tandem queues, and queues with unreliable servers. Mathematical models of networks and queuing systems are widely used for the study and optimization of various technical, physical, economic, industrial, and administrative systems, and this book will be valuable for researchers, graduate students, and practitioners in these domains.
A billiard is a dynamical system in which a point particle alternates between free motion and specular reflections from the boundary of a domain. Exterior Billiards presents billiards in the complement of domains and their applications in aerodynamics and geometrical optics. This book distinguishes itself from existing literature by presenting billiard dynamics outside bounded domains, including scattering, resistance, invisibility and retro-reflection. It begins with an overview of the mathematical notations used throughout the book and a brief review of the main results. Chapters 2 and 3 are focused on problems of minimal resistance and Newton’s problem in media with positive temperature. In chapters 4 and 5, scattering of billiards by nonconvex and rough domains is characterized and some related special problems of optimal mass transportation are studied. Applications in aerodynamics are addressed next and problems of invisibility and retro-reflection within the framework of geometric optics conclude the text. The book will appeal to mathematicians working in dynamical systems and calculus of variations. Specialists working in the areas of applications discussed will also find it useful.
Alexander “Sasha” Sergeeff è nato a Mosca, Russia, nel 1968. Ha cominciato a dipingere all'età di 5 anni. Ha frequentato Liceo Artistico di Mosca. Ha studiato e lavorato in Accademia di Belle Arti di Mosca. Dal 1993 vive e lavora a Roma. Le sue opere sono state esposte nelle numerose mostre tra Mosca, Roma, Milano, Parigi, New York ed altri città del mondo. Suo modo di lavorare rimasto rigorosamente ottocentesco: su commissione privata.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.