In this memoir the authors present proofs of basic results, including those developed so far by Harold Bell, for the plane fixed point problem: Does every map of a non-separating plane continuum have a fixed point? Some of these results had been announced much earlier by Bell but without accessible proofs. The authors define the concept of the variation of a map on a simple closed curve and relate it to the index of the map on that curve: Index = Variation + 1. A prime end theory is developed through hyperbolic chords in maximal round balls contained in the complement of a non-separating plane continuum $X$. They define the concept of an outchannel for a fixed point free map which carries the boundary of $X$ minimally into itself and prove that such a map has a unique outchannel, and that outchannel must have variation $-1$. Also Bell's Linchpin Theorem for a foliation of a simply connected domain, by closed convex subsets, is extended to arbitrary domains in the sphere. The authors introduce the notion of an oriented map of the plane and show that the perfect oriented maps of the plane coincide with confluent (that is composition of monotone and open) perfect maps of the plane. A fixed point theorem for positively oriented, perfect maps of the plane is obtained. This generalizes results announced by Bell in 1982.
This book provides a comprehensive survey of the Sharkovsky ordering, its different aspects and its role in dynamical systems theory and applications. It addresses the coexistence of cycles for continuous interval maps and one-dimensional spaces, combinatorial dynamics on the interval and multidimensional dynamical systems. Also featured is a short chapter of personal remarks by O.M. Sharkovsky on the history of the Sharkovsky ordering, the discovery of which almost 60 years ago led to the inception of combinatorial dynamics. Now one of cornerstones of dynamics, bifurcation theory and chaos theory, the Sharkovsky ordering is an important tool for the investigation of dynamical processes in nature. Assuming only a basic mathematical background, the book will appeal to students, researchers and anyone who is interested in the subject.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.