Introduction to Computational Contact Mechanics: A Geometrical Approach covers the fundamentals of computational contact mechanics and focuses on its practical implementation. Part one of this textbook focuses on the underlying theory and covers essential information about differential geometry and mathematical methods which are necessary to build the computational algorithm independently from other courses in mechanics. The geometrically exact theory for the computational contact mechanics is described in step-by-step manner, using examples of strict derivation from a mathematical point of view. The final goal of the theory is to construct in the independent approximation form /so-called covariant form, including application to high-order and isogeometric finite elements. The second part of a book is a practical guide for programming of contact elements and is written in such a way that makes it easy for a programmer to implement using any programming language. All programming examples are accompanied by a set of verification examples allowing the user to learn the research verification technique, essential for the computational contact analysis. Key features: Covers the fundamentals of computational contact mechanics Covers practical programming, verification and analysis of contact problems Presents the geometrically exact theory for computational contact mechanics Describes algorithms used in well-known finite element software packages Describes modeling of forces as an inverse contact algorithm Includes practical exercises Contains unique verification examples such as the generalized Euler formula for a rope on a surface, and the impact problem and verification of thå percussion center Accompanied by a website hosting software Introduction to Computational Contact Mechanics: A Geometrical Approach is an ideal textbook for graduates and senior undergraduates, and is also a useful reference for researchers and practitioners working in computational mechanics.
This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.
The intuitive understanding of contact bodies is based on the geometry and adjoining surfaces. A powerful approach to solve the contact problem is to take advantage of the geometry of an analyzed object and describe the problem in the best coordinate system. This book is a systematical analysis of geometrical situations leading to contact pairs: suface-to-surface, curve-to-surface, point-to-surface a.s.o. resultingin the corresponding computational algorithms to solve the contact problem.
It was a greatest pleasure for me to learn that Springer-Verlag wished to produce a second edition of my book. In this connection, Dr. H. Lotsch asked me to send hirn a list of misprints, mistakes, and inaccuracies that had been noticed in the first edition and to make corresponding corrections without disturbing the layout or the typo graphy too much. I accepted this opportunity with alacrity and, moreover, found some free places in the text where I was able to insert some concise, up-to-date information about new lasing compounds and stimulated emission channels. It was also possible to increase the number of reference citations. The reader of the second edition hence has access to more complete data on insulating laser crystals. However, sections on laser-crystal physics have not been updated, because a satisfactory de scription of the progress made in the last ten years in this field would have required the sections to be extended enormously or even a new book to be written. Moscow, July 1989 ALEXANDER A. KAMINSKII Preface to the First Edition The greatest reward for an author is the feeling of satisfaction he gets when it becomes c1ear to hirn that readers find his work useful. After my book appeared in the USSR in 1975 I received many letters from fellow physicists inc1uding colleagues from Western European countries and the USA.
Introduction to Computational Contact Mechanics: A GeometricalApproach covers the fundamentals of computational contactmechanics and focuses on its practical implementation. Part one ofthis textbook focuses on the underlying theory and covers essentialinformation about differential geometry and mathematical methodswhich are necessary to build the computational algorithmindependently from other courses in mechanics. The geometricallyexact theory for the computational contact mechanics is describedin step-by-step manner, using examples of strict derivation from amathematical point of view. The final goal of the theory is toconstruct in the independent approximation form /so-calledcovariant form, including application to high-order andisogeometric finite elements. The second part of a book is a practical guide for programming ofcontact elements and is written in such a way that makes it easyfor a programmer to implement using any programming language. Allprogramming examples are accompanied by a set of verificationexamples allowing the user to learn the research verificationtechnique, essential for the computational contact analysis. Key features: Covers the fundamentals of computational contact mechanics Covers practical programming, verification and analysis ofcontact problems Presents the geometrically exact theory for computationalcontact mechanics Describes algorithms used in well-known finite element softwarepackages Describes modeling of forces as an inverse contactalgorithm Includes practical exercises Contains unique verification examples such as the generalizedEuler formula for a rope on a surface, and the impact problem andverification of thå percussion center Accompanied by a website hosting software Introduction to Computational Contact Mechanics: A GeometricalApproach is an ideal textbook for graduates and seniorundergraduates, and is also a useful reference for researchers andpractitioners working in computational mechanics.
This book contains a systematical analysis of geometrical situations leading to contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface. Each contact pair is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system. The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are then ready-for-implementation numerical algorithms within the finite element method including any arbitrary discretization techniques such as high order and isogeometric finite elements, which are most convenient for the considered geometrical situation. The book proposes a consistent study of geometry and kinematics, variational formulations, constitutive relations for surfaces and discretization techniques for all considered geometrical pairs and contains the associated numerical analysis as well as some new analytical results in contact mechanics.
The intuitive understanding of contact bodies is based on the geometry and adjoining surfaces. A powerful approach to solve the contact problem is to take advantage of the geometry of an analyzed object and describe the problem in the best coordinate system. This book is a systematical analysis of geometrical situations leading to contact pairs: suface-to-surface, curve-to-surface, point-to-surface a.s.o. resultingin the corresponding computational algorithms to solve the contact problem.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.