Emphasizing the physical and technological aspects of plant energetics, this comprehensive book covers a significant interdisciplinary research area for a broad range of investigators. Plant Energetics presentsthe thermodynamics of energy processes in plants, their interconnection and arrangement, and the estimation of intrinsic energy needs of the plant connected with performing various physiological functions. The book also demonstrates the role of electrical and electrochemical processes in the plants life cycle. Plant Energetics incorporates such diverse themes as thermodynamics, biophysics, and bioelectrochemistry with applications in horticulture and ecology. It also discusses the roles and mechanisms of both quantum and thermophysical processes of theconversion of solar energy by plants, including photosynthesis and long distance transport. Comprehensive details of value to basic and applied researchers dealing with photosynthesis, agriculture, horticulture, bioenergetics, biophysics, photobiology, and plant physiology make Plant Energetics an informative, one-stop resource that willsave time and energy in your search for the latest information. - Plant Energetics incorporates such diverse themes as thermodynamics, biophysics, and bioelectrochemistry with applications in horticulture and ecology. It also discusses the roles and mechanisms of both quantum and thermophysical processes of the conversion of solar energy by plants, including photosynthesis and long-distance transport - Extensive details of value to basic and applied researchers dealing with photosynthesis, agriculture, horticulture, bioenergetics, biophysics, photobiology, and plant physiology make Plant Energetics an informative, one-stop resource that will save you time and energy in your search for the latest information
Update your knowledge of the chemical, biological, and physical properties of liquid-liquid interfaces with Liquid-Liquid Interfaces: Theory and Methods. This valuable reference presents a broadly based account of current research in liquid-liquid interfaces and is ideal for researchers, teachers, and students. Internationally recognized investigators of electrochemical, biological, and photochemical effects in interfacial phenomena share their own research results and extensively review the results of others working in their area. Because of its unusually wide breadth, this book has something for everyone interested in liquid-liquid interfaces. Topics include interfacial and phase transfer catalysis, electrochemistry and colloidal chemistry, ion and electron transport processes, molecular dynamics, electroanalysis, liquid membranes, emulsions, pharmacology, and artificial photosynthesis. Enlightening discussions explore biotechnological applications, such as drug delivery, separation and purification of nuclear waste, catalysis, mineral extraction processes, and the manufacturing of biosensors and ion-selective electrodes. Liquid-Liquid Interfaces: Theory and Methods is a well-written, informative, one-stop resource that will save you time and energy in your search for the latest information on liquid-liquid interfaces.
Provides a comprehensive treatment of surface chemistry and its applications to chemical engineering, biology, and medicine. Focuses on the chmical and physical structure of oil-water interfaces and membrane surfaces. Details interfacial potentials, ion solvation, and electrostatic instabilities in double layers.
Emphasizing the physical and technological aspects of plant energetics, this comprehensive book covers a significant interdisciplinary research area for a broad range of investigators. Plant Energetics presentsthe thermodynamics of energy processes in plants, their interconnection and arrangement, and the estimation of intrinsic energy needs of the plant connected with performing various physiological functions. The book also demonstrates the role of electrical and electrochemical processes in the plants life cycle. Plant Energetics incorporates such diverse themes as thermodynamics, biophysics, and bioelectrochemistry with applications in horticulture and ecology. It also discusses the roles and mechanisms of both quantum and thermophysical processes of theconversion of solar energy by plants, including photosynthesis and long distance transport. Comprehensive details of value to basic and applied researchers dealing with photosynthesis, agriculture, horticulture, bioenergetics, biophysics, photobiology, and plant physiology make Plant Energetics an informative, one-stop resource that willsave time and energy in your search for the latest information. - Plant Energetics incorporates such diverse themes as thermodynamics, biophysics, and bioelectrochemistry with applications in horticulture and ecology. It also discusses the roles and mechanisms of both quantum and thermophysical processes of the conversion of solar energy by plants, including photosynthesis and long-distance transport - Extensive details of value to basic and applied researchers dealing with photosynthesis, agriculture, horticulture, bioenergetics, biophysics, photobiology, and plant physiology make Plant Energetics an informative, one-stop resource that will save you time and energy in your search for the latest information
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.