This book is about the importance of random phenomena occurring in nature. Cases are selected in which randomness is most important or crucial, such as Brownian motion, certain reactions in Physical Chemistry and Biology, and intermittency in magnetic field generation by turbulent fluid motion, etc. Due to “almighty chance” the structures can originate from chaos even in linear problems. This idea is complementary as well as competes with a basic concept of synergetics where structures appear mainly due to the pan-linear nature of phenomena. This book takes a new look at the problem of structure formation in random media, qualitative physical representation of modern conceptions, intermittency, fractals, percolation and many examples from different fields of science.
This book focuses on the recent advances in our understanding of solar convection and activity, and on new methods and results of helioseismic diagnostics. It provides a comprehensive overview of the current status of the field and presents new ideas and approaches.
The second edition of this volume has been extensively revised. A different version of Chap. 7, reflecting recent significant progress in understanding of spatiotempo ral chaos, is now provided. Much new material has been included in the sections dealing with intermittency in birth-death models and noise-induced phase transi tions. A new section on control of chaotic behavior has been added to Chap. 6. The subtitle of the volume has been changed to better reflect its contents. We acknowledge stimulating discussions with H. Haken and E. Scholl and are grateful to our colleagues M. Bar, D. Battogtokh, M. Eiswirth, M. Hildebrand, K. Krischer, and V. Tereshko for their comments and assistance. We thank M. Lubke for her help in producing new figures for this volume. Berlin and Moscow A. s. Mikhailov April 1996 A. Yu. Loskutov Preface to the First Edition This textbook is based on a lecture course in synergetics given at the University of Moscow. In this second of two volumes, we discuss the emergence and properties of complex chaotic patterns in distributed active systems. Such patterns can be produced autonomously by a system, or can result from selective amplification of fluctuations caused by external weak noise.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.