This book presents and analyzes the influence of small size particles of lead, cadmium and silver sulfide on the properties of nonstoichiometric semiconductors. Important nonstoichiometry aspects in nanostructures are discussed, such as the distribution of sulfur atoms in nanofilms, a non-periodic distribution of the atomic planes in nanoparticles, interdependent changes in crystal structure of nanocrystalline material. Tuning the stoichiometry allows to obtain superionic conductivity and catalytic activity under visible light. The wavelength of the luminescence of nanoparticles changes with the size of the nanoparticles. Various methods to prepare nanostructured sulfides are described. Special attention is given to the hydrochemical bath deposition as a universal method for the synthesis of sulfides as nanofilms, stable colloidal solutions, quantum dots, isolated nanoparticles with a protective shell and heteronanostructures. The effect of nanoparticle size and nonstoichiometry on the band gap, optical and thermal properties of nanostructured sulfides is also considered. The novel applications of sulfide nanoparticles in nanoelectronics, catalysis, nanobiology and nanomedicine are sketched.
In the monograph, the first of this type in the world, the authors discuss systematically the current state of investigations into nanocrystalline materials. The experimental results on the effect of the nanocrystalline state on the microstructure and the mechanical, thermophysical, optical, and magnetic properties of metals, alloys and solid-phase compounds are generalised. Special attention is given to the main methods of production of isolated nanoparticles, ultrafine powders and dense nanocrystalline materials. The dimensional effects in isolated nanoparticles and high-density nanocrystalline materials are discussed in detail, and the important role of the interface in the formation of the structure and properties of dense nanocrystalline materials is shown. The modelling considerations, explaining special features of the structure and anomalous properties of substances in the nanocrystalline condition, are analysed.
This book embraces the entire range of problems associated with phase equilibria in “tungsten – carbon” binary system and related ternary systems, nonstoichiometry, disorder and order in different tungsten carbides, electronic and crystal structure of these carbides. The main application of tungsten carbides is constituent in hardmetals for cutting tools. In the last 20 years, the most active efforts were made in synthesis and application of nanocrystalline tungsten carbide for the production of nanostructured hardmetals. The present book describes in detail different methods for production of nanocrystalline tungsten carbide. The peculiarities of sintering of Co hardmetals from nanocrystalline powders having different particle sizes are discussed. Materials scientists using tungsten carbide to create novel superhard and tough materials will find this book particularly useful.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.