Understand, explore, and effectively present data using the powerful data visualization techniques of Python Key FeaturesUse the power of Pandas and Matplotlib to easily solve data mining issuesUnderstand the basics of statistics to build powerful predictive data modelsGrasp data mining concepts with helpful use-cases and examplesBook Description Data mining, or parsing the data to extract useful insights, is a niche skill that can transform your career as a data scientist Python is a flexible programming language that is equipped with a strong suite of libraries and toolkits, and gives you the perfect platform to sift through your data and mine the insights you seek. This Learning Path is designed to familiarize you with the Python libraries and the underlying statistics that you need to get comfortable with data mining. You will learn how to use Pandas, Python's popular library to analyze different kinds of data, and leverage the power of Matplotlib to generate appealing and impressive visualizations for the insights you have derived. You will also explore different machine learning techniques and statistics that enable you to build powerful predictive models. By the end of this Learning Path, you will have the perfect foundation to take your data mining skills to the next level and set yourself on the path to become a sought-after data science professional. This Learning Path includes content from the following Packt products: Statistics for Machine Learning by Pratap DangetiMatplotlib 2.x By Example by Allen Yu, Claire Chung, Aldrin YimPandas Cookbook by Theodore PetrouWhat you will learnUnderstand the statistical fundamentals to build data modelsSplit data into independent groups Apply aggregations and transformations to each groupCreate impressive data visualizationsPrepare your data and design models Clean up data to ease data analysis and visualizationCreate insightful visualizations with Matplotlib and SeabornCustomize the model to suit your own predictive goalsWho this book is for If you want to learn how to use the many libraries of Python to extract impactful information from your data and present it as engaging visuals, then this is the ideal Learning Path for you. Some basic knowledge of Python is enough to get started with this Learning Path.
Leverage the power of Matplotlib to visualize and understand your data more effectively Key Features Perform effective data visualization with Matplotlib and get actionable insights from your data Design attractive graphs, charts, and 2D plots, and deploy them to the web Get the most out of Matplotlib in this practical guide with updated code and examples Book Description Python is a general-purpose programming language increasingly being used for data analysis and visualization. Matplotlib is a popular data visualization package in Python used to design effective plots and graphs. This is a practical, hands-on resource to help you visualize data with Python using the Matplotlib library. Matplotlib for Python Developers, Second Edition shows you how to create attractive graphs, charts, and plots using Matplotlib. You will also get a quick introduction to third-party packages, Seaborn, Pandas, Basemap, and Geopandas, and learn how to use them with Matplotlib. After that, you’ll embed and customize your plots in third-party tools such as GTK+3, Qt 5, and wxWidgets. You’ll also be able to tweak the look and feel of your visualization with the help of practical examples provided in this book. Further on, you’ll explore Matplotlib 2.1.x on the web, from a cloud-based platform using third-party packages such as Django. Finally, you will integrate interactive, real-time visualization techniques into your current workflow with the help of practical real-world examples. By the end of this book, you’ll be thoroughly comfortable with using the popular Python data visualization library Matplotlib 2.1.x and leveraging its power to build attractive, insightful, and powerful visualizations. What you will learn Create 2D and 3D static plots such as bar charts, heat maps, and scatter plots Get acquainted with GTK+3, Qt5, and wxWidgets to understand the UI backend of Matplotlib Develop advanced static plots with third-party packages such as Pandas, GeoPandas, and Seaborn Create interactive plots with real-time updates Develop web-based, Matplotlib-powered graph visualizations with third-party packages such as Django Write data visualization code that is readily expandable on the cloud platform Who this book is for This book is essentially for anyone who wants to create intuitive data visualizations using the Matplotlib library. If you’re a data scientist or analyst and wish to create attractive visualizations using Python, you’ll find this book useful. Some knowledge of Python programming is all you need to get started.
Unlock deeper insights into visualization in form of 2D and 3D graphs using Matplotlib 2.x About This Book Create and customize live graphs, by adding style, color, font to make appealing graphs. A complete guide with insightful use cases and examples to perform data visualizations with Matplotlib's extensive toolkits. Create timestamp data visualizations on 2D and 3D graphs in form of plots, histogram, bar charts, scatterplots and more. Who This Book Is For This book is for anyone interested in data visualization, to get insights from big data with Python and Matplotlib 2.x. With this book you will be able to extend your knowledge and learn how to use python code in order to visualize your data with Matplotlib. Basic knowledge of Python is expected. What You Will Learn Familiarize with the latest features in Matplotlib 2.x Create data visualizations on 2D and 3D charts in the form of bar charts, bubble charts, heat maps, histograms, scatter plots, stacked area charts, swarm plots and many more. Make clear and appealing figures for scientific publications. Create interactive charts and animation. Extend the functionalities of Matplotlib with third-party packages, such as Basemap, GeoPandas, Mplot3d, Pandas, Scikit-learn, and Seaborn. Design intuitive infographics for effective storytelling. In Detail Big data analytics are driving innovations in scientific research, digital marketing, policy-making and much more. Matplotlib offers simple but powerful plotting interface, versatile plot types and robust customization. Matplotlib 2.x By Example illustrates the methods and applications of various plot types through real world examples. It begins by giving readers the basic know-how on how to create and customize plots by Matplotlib. It further covers how to plot different types of economic data in the form of 2D and 3D graphs, which give insights from a deluge of data from public repositories, such as Quandl Finance. You will learn to visualize geographical data on maps and implement interactive charts. By the end of this book, you will become well versed with Matplotlib in your day-to-day work to perform advanced data visualization. This book will guide you to prepare high quality figures for manuscripts and presentations. You will learn to create intuitive info-graphics and reshaping your message crisply understandable. Style and approach Step by step comprehensive guide filled with real world examples.
Leverage the power of Matplotlib to visualize and understand your data more effectively Key Features Perform effective data visualization with Matplotlib and get actionable insights from your data Design attractive graphs, charts, and 2D plots, and deploy them to the web Get the most out of Matplotlib in this practical guide with updated code and examples Book Description Python is a general-purpose programming language increasingly being used for data analysis and visualization. Matplotlib is a popular data visualization package in Python used to design effective plots and graphs. This is a practical, hands-on resource to help you visualize data with Python using the Matplotlib library. Matplotlib for Python Developers, Second Edition shows you how to create attractive graphs, charts, and plots using Matplotlib. You will also get a quick introduction to third-party packages, Seaborn, Pandas, Basemap, and Geopandas, and learn how to use them with Matplotlib. After that, you’ll embed and customize your plots in third-party tools such as GTK+3, Qt 5, and wxWidgets. You’ll also be able to tweak the look and feel of your visualization with the help of practical examples provided in this book. Further on, you’ll explore Matplotlib 2.1.x on the web, from a cloud-based platform using third-party packages such as Django. Finally, you will integrate interactive, real-time visualization techniques into your current workflow with the help of practical real-world examples. By the end of this book, you’ll be thoroughly comfortable with using the popular Python data visualization library Matplotlib 2.1.x and leveraging its power to build attractive, insightful, and powerful visualizations. What you will learn Create 2D and 3D static plots such as bar charts, heat maps, and scatter plots Get acquainted with GTK+3, Qt5, and wxWidgets to understand the UI backend of Matplotlib Develop advanced static plots with third-party packages such as Pandas, GeoPandas, and Seaborn Create interactive plots with real-time updates Develop web-based, Matplotlib-powered graph visualizations with third-party packages such as Django Write data visualization code that is readily expandable on the cloud platform Who this book is for This book is essentially for anyone who wants to create intuitive data visualizations using the Matplotlib library. If you’re a data scientist or analyst and wish to create attractive visualizations using Python, you’ll find this book useful. Some knowledge of Python programming is all you need to get started.
Understand, explore, and effectively present data using the powerful data visualization techniques of Python Key FeaturesUse the power of Pandas and Matplotlib to easily solve data mining issuesUnderstand the basics of statistics to build powerful predictive data modelsGrasp data mining concepts with helpful use-cases and examplesBook Description Data mining, or parsing the data to extract useful insights, is a niche skill that can transform your career as a data scientist Python is a flexible programming language that is equipped with a strong suite of libraries and toolkits, and gives you the perfect platform to sift through your data and mine the insights you seek. This Learning Path is designed to familiarize you with the Python libraries and the underlying statistics that you need to get comfortable with data mining. You will learn how to use Pandas, Python's popular library to analyze different kinds of data, and leverage the power of Matplotlib to generate appealing and impressive visualizations for the insights you have derived. You will also explore different machine learning techniques and statistics that enable you to build powerful predictive models. By the end of this Learning Path, you will have the perfect foundation to take your data mining skills to the next level and set yourself on the path to become a sought-after data science professional. This Learning Path includes content from the following Packt products: Statistics for Machine Learning by Pratap DangetiMatplotlib 2.x By Example by Allen Yu, Claire Chung, Aldrin YimPandas Cookbook by Theodore PetrouWhat you will learnUnderstand the statistical fundamentals to build data modelsSplit data into independent groups Apply aggregations and transformations to each groupCreate impressive data visualizationsPrepare your data and design models Clean up data to ease data analysis and visualizationCreate insightful visualizations with Matplotlib and SeabornCustomize the model to suit your own predictive goalsWho this book is for If you want to learn how to use the many libraries of Python to extract impactful information from your data and present it as engaging visuals, then this is the ideal Learning Path for you. Some basic knowledge of Python is enough to get started with this Learning Path.
Unlock deeper insights into visualization in form of 2D and 3D graphs using Matplotlib 2.x About This Book Create and customize live graphs, by adding style, color, font to make appealing graphs. A complete guide with insightful use cases and examples to perform data visualizations with Matplotlib's extensive toolkits. Create timestamp data visualizations on 2D and 3D graphs in form of plots, histogram, bar charts, scatterplots and more. Who This Book Is For This book is for anyone interested in data visualization, to get insights from big data with Python and Matplotlib 2.x. With this book you will be able to extend your knowledge and learn how to use python code in order to visualize your data with Matplotlib. Basic knowledge of Python is expected. What You Will Learn Familiarize with the latest features in Matplotlib 2.x Create data visualizations on 2D and 3D charts in the form of bar charts, bubble charts, heat maps, histograms, scatter plots, stacked area charts, swarm plots and many more. Make clear and appealing figures for scientific publications. Create interactive charts and animation. Extend the functionalities of Matplotlib with third-party packages, such as Basemap, GeoPandas, Mplot3d, Pandas, Scikit-learn, and Seaborn. Design intuitive infographics for effective storytelling. In Detail Big data analytics are driving innovations in scientific research, digital marketing, policy-making and much more. Matplotlib offers simple but powerful plotting interface, versatile plot types and robust customization. Matplotlib 2.x By Example illustrates the methods and applications of various plot types through real world examples. It begins by giving readers the basic know-how on how to create and customize plots by Matplotlib. It further covers how to plot different types of economic data in the form of 2D and 3D graphs, which give insights from a deluge of data from public repositories, such as Quandl Finance. You will learn to visualize geographical data on maps and implement interactive charts. By the end of this book, you will become well versed with Matplotlib in your day-to-day work to perform advanced data visualization. This book will guide you to prepare high quality figures for manuscripts and presentations. You will learn to create intuitive info-graphics and reshaping your message crisply understandable. Style and approach Step by step comprehensive guide filled with real world examples.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.