Combinatorial Algorithms for Computers and Calculators, Second Edition deals with combinatorial algorithms for computers and calculators. Topics covered range from combinatorial families such as the random subset and k-subset of an n-set and Young tableaux, to combinatorial structures including the cycle structure of a permutation and the spanning forest of a graph. Newton forms of a polynomial and the composition of power series are also discussed. Comprised of 30 chapters, this volume begins with an introduction to combinatorial algorithms by considering the generation of all of the 2n subsets of the set {1, 2,...,n}. The discussion then turns to the random subset and k-subset of an n-set; next composition of n into k parts; and random composition of n into k parts. Subsequent chapters focus on sequencing, ranking, and selection algorithms in general combinatorial families; renumbering rows and columns of an array; the cycle structure of a permutation; and the permanent function. Sorting and network flows are also examined, along with the backtrack method and triangular numbering in partially ordered sets. This book will be of value to both students and specialists in the fields of applied mathematics and computer science.
The articles in this volume are an outgrowth of a colloquium "Systemes Integrables et Feuilletages," which was held in honor of the sixtieth birthday of Pierre Molino. The topics cover the broad range of mathematical areas which were of keen interest to Molino, namely, integral systems and more generally symplectic geometry and Poisson structures, foliations and Lie transverse structures, transitive structures, and classification problems.
Alfred Gray's work covered a great part of differential geometry. In September 2000, a remarkable International Congress on Differential Geometry was held in his memory in Bilbao, Spain. Mathematicians from all over the world, representing 24 countries, attended the event. This volume includes major contributions by well known mathematicians (T. Banchoff, S. Donaldson, H. Ferguson, M. Gromov, N. Hitchin, A. Huckleberry, O. Kowalski, V. Miquel, E. Musso, A. Ros, S. Salamon, L. Vanhecke, P. Wellin and J.A. Wolf), the interesting discussion from the round table moderated by J.-P. Bourguignon, and a carefully selected and refereed selection of the Short Communications presented at the Congress. This book represents the state of the art in modern differential geometry, with some general expositions of some of the more active areas: special Riemannian manifolds, Lie groups and homogeneous spaces, complex structures, symplectic manifolds, geometry of geodesic spheres and tubes and related problems, geometry of surfaces, and computer graphics in differential geometry.
Faster, cheaper and environmentally friendly, these are the criteria for designing new reactions and this is the challenge faced by many chemical engineers today. Based on courses thaught by the authors, this advanced textbook discusses opportunities for carrying out reactions on an industrial level in a technically controllable, sustainable, costeffective and safe manner. Adopting a practical approach, it describes how miniaturized devices (mixers, reactors, heat exchangers, and separators) are used successfully for process intensification, focusing on the engineering aspects of microstrctured devices, such as their design and main chracteristics for homogeneous and multiphase reactions. It adresses the conditions under which microstructured devices are beneficial, how they should be designed, and how such devices can be integrated in an existing chemical process. Case studies show how the knowledge gained can be applied for particular processes. The textbook is essential for master and doctoral students, as well as for professional chemists and chemical engineers working in this area.
Combinatorial Algorithms for Computers and Calculators, Second Edition deals with combinatorial algorithms for computers and calculators. Topics covered range from combinatorial families such as the random subset and k-subset of an n-set and Young tableaux, to combinatorial structures including the cycle structure of a permutation and the spanning forest of a graph. Newton forms of a polynomial and the composition of power series are also discussed. Comprised of 30 chapters, this volume begins with an introduction to combinatorial algorithms by considering the generation of all of the 2n subsets of the set {1, 2,...,n}. The discussion then turns to the random subset and k-subset of an n-set; next composition of n into k parts; and random composition of n into k parts. Subsequent chapters focus on sequencing, ranking, and selection algorithms in general combinatorial families; renumbering rows and columns of an array; the cycle structure of a permutation; and the permanent function. Sorting and network flows are also examined, along with the backtrack method and triangular numbering in partially ordered sets. This book will be of value to both students and specialists in the fields of applied mathematics and computer science.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.