An essential resource for learning about general relativity and much more, from four leading experts Important and useful to every student of relativity, this book is a unique collection of some 475 problems--with solutions--in the fields of special and general relativity, gravitation, relativistic astrophysics, and cosmology. The problems are expressed in broad physical terms to enhance their pertinence to readers with diverse backgrounds. In their solutions, the authors have attempted to convey a mode of approach to these kinds of problems, revealing procedures that can reduce the labor of calculations while avoiding the pitfall of too much or too powerful formalism. Although well suited for individual use, the volume may also be used with one of the modem textbooks in general relativity.
Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.
In this meditation on religion and science, Lightman explores the tension between our yearning for permanence and certainty, and the modern scientific discoveries that demonstrate the impermanent and uncertain nature of the world. As a physicist, he has always held a scientific view of the world. But one summer evening, while looking at the stars from a small boat at sea he was overcome by the sensation that he was merging with a grand and eternal unity, a hint of something absolute and immaterial. This is his exploration of these seemingly contradictory impulses, and the journey along the different paths of religion and science that become part of his quest. -- adapted from publisher info.
For the last twenty years, Alan Lightman has been writing essays that display his genius for bringing literary and scientific concerns into harmony. Dance for Two gathers the best of Lightman's work. Here are pieces that touch on both the ethereal and the corporeal; the dependence of a ballerina on the laws of physics, the choice of every scientist makes between tinkering and theorizing, the unscientific nature of discovery, the impulse behind an unprompted smile. Dance for Two is an intimate and fascinating look into the creative compulsions shared by the artist and the scientist.
The conservation of energy, the second law of thermodynamics, the theory of relativity, quantum mechanicstogether, these concepts form the foundation upon which modern physics was built. But the influence of these four landmark ideas has extended far beyond hard science. There is no aspect of twentieth-century cultureincluding the arts, social sciences, philosophy, and politicsthat has not been profoundly influenced by them. In Great Ideas in Physics, Alan Lightman clearly explains the physics behind each of the four great ideas and deftly untangles for lay readers such knotty concepts as entropy, the relativity of time, and the Heisenberg uncertainty principle. Throughout the book he uses excerpts from the writings of scientific luminaries such as Newton, Kelvin, Einstein, and de Broglie to help place each in its proper historical perspective. And with the help of expertly annotated passages from the works of dozens of writers, philosophers, artists, and social theorists, Lightman explores the two-way influences of these landmark scientific concepts on our entire human culture and the world of ideas.
The authors have attempted to convey a mode of approach to these kinds of problems, revealing procedures that can reduce the labor of calculations while avoiding the pitfall of too much or too powerful formalism.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.