Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to a wide range of situations, most notably to membership problems, such as the Briançon–Skoda theorem and Hilbert's Nullstellensatz, to arithmetic intersection theory and to tropical geometry. This book will supersede the existing literature in this area, which dates back more than three decades. It will be appreciated by mathematicians and graduate students in multivariate complex analysis. But thanks to the gentle treatment of the one-dimensional case in Chapter 1 and the rich background material in the appendices, it may also be read by specialists in arithmetic, diophantine, or tropical geometry, as well as in mathematical physics or computer algebra.
During sleep, the mammalian brain generates an orderly progression of low frequency oscillations as the brain moves from sleep onset into deep sleep. This book explores the underlying neural mechanisms involved in generating these oscillations through interacting neural assemblies in the thalamus and the cortex. Sleep spindles are involved in the consolidation of experiences in long-term memory during sleep. Written by two leading experts in the field, this book integrates the properties of ion channels, synaptic interactions, and intrinsic cellular mechanisms into biophysical models of neural oscillations in local circuits and distributed networks. In particular, the book focuses on sleep spindles and how they are highjacked by epileptic seizures Reissued in paperback after being unavailable for many years, this revised edition of Thalamocortical Assemblies includes updates to each chapter, highlighting developments since its first publication. The book will be valuable to neuroscientists, neurobiologists, physiologists and computational researchers interested in sleep and memory processes.
Neuronal Noise combines experimental, theoretical and computational results to show how noise is inherent to neuronal activity, and how noise can be important for neuronal computations. The book covers many aspects of noise in neurons, with an emphasis on the largest source of noise: synaptic noise. It provides students and young researchers with an overview of the important methods and concepts that have emerged from research in this area. It also provides the specialist with a summary of the large body of sometimes contrasting experimental data, and different theories proposed to explore the computational power that various forms of "noise" can confer to neurons.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.