This book provides deep insights about the fundamentals, applications and perspectives of the use of supercritical CO2 as solvent and antisolvent for biorefinering.
Microalgae cultivation for biofuel conversion is widely treated in literature as it could allow reducing fossil fuel consumptions. One of the challenges of this technology is related to the high power and cost requirements for the harvesting and dewatering steps. The influence of dewatering process can be substantially reduced when considering hydrothermal gasification (HTG). This technology, which have already been demonstrated and tested, allows treating feedstock with more than 80% moisture content and can lead to high SNG conversion efficiencies. The object of this paper is to show the combination of microalgae growing and processing coupled with the HTG and syngas purification for SNG grid quality production. The productivity potential for this given technology is evaluated considering global solar radiation data available and the cultivation technology, which can be characterized by photosynthesis conversion efficiency. Systematic system design methodology followed by multi-objective optimization technique using evolutionary algorithms are carried out to provide a set of candidate solutions considering different configurations and conflictive objectives such as efficiency, cost and environmental impact.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.