Properties of crystalline materials are almost always governed by the defects within them. The ability to shape metals and alloys into girders, furniture, automobiles and medical prostheses stems from the generation, motion and interaction of these defects. Crystal defects are also the agents of chemical changes within crystals, enabling mass transport by diffusion and changes of phase. The distortion of the crystal created by a defect enables it to interact with other defects over distances much greater than the atomic scale. The theory of elasticity is used to describe these interactions. Physics of Elasticity and Crystal Defects, 2nd Edition is an introduction to the theory of elasticity and its application to point defects, dislocations, grain boundaries, inclusions, and cracks. A unique feature of the book is the treatment of the relationship between the atomic structures of defects and their elastic fields. Another unique feature is the last chapter which describes five technologically important areas requiring further fundamental research, with suggestions for possible PhD projects. There are exercises for the student to check their understanding as they work through each chapter with detailed solutions. There are problems set at the end of each chapter, also with detailed solutions. In this second edition the treatment of the Eshelby inclusion has been expanded into a chapter of its own, with complete self-contained derivations of the elastic fields inside and outside the inclusion. This is a textbook for postgraduate students in physics, engineering and materials science. Even students and professionals with some knowledge of elasticity and defects will almost certainly find much that is new to them in this book.
All technologies depend on the availability of suitable materials. The progress of civilisation is often measured by the materials people have used, from the stone age to the silicon age. Engineers exploit the relationships between the structure, properties and manufacturing methods of a material to optimise their design and production for particular applications. Scientists seek to understand and predict those relationships. This short book sets out fundamental concepts that underpin the science of materials and emphasizes their relevance to mainstream chemistry, physics and biology. These include the thermodynamic stability of materials in various environments, quantum behaviour governing all matter, and active matter. Others include defects as the agents of change in crystalline materials, materials at the nanoscale, the emergence of new science at increasing length scales in materials, and man-made materials with properties determined by their structure rather than their chemistry. The book provides a unique insight into the essence of materials science at a level suitable for pre-university students and undergraduates of materials science. It will also be suitable for graduates in other subjects contemplating postgraduate study in materials science. Professional materials scientists will also find it stimulating and occasionally provocative.
This book describes the modern real-space approach to electronic structures and properties of crystalline and non-crystalline materials in a form readily accessible to undergraduates in materials science, physics, and chemistry.
All technologies depend on the availability of suitable materials. The progress of civilisation is often measured by the materials people have used, from the stone age to the silicon age. Engineers exploit the relationships between the structure, properties and manufacturing methods of a material to optimise their design and production for particular applications. Scientists seek to understand and predict those relationships. This short book sets out fundamental concepts that underpin the science of materials and emphasizes their relevance to mainstream chemistry, physics and biology. These include the thermodynamic stability of materials in various environments, quantum behaviour governing all matter, and active matter. Others include defects as the agents of change in crystalline materials, materials at the nanoscale, the emergence of new science at increasing length scales in materials, and man-made materials with properties determined by their structure rather than their chemistry. The book provides a unique insight into the essence of materials science at a level suitable for pre-university students and undergraduates of materials science. It will also be suitable for graduates in other subjects contemplating postgraduate study in materials science. Professional materials scientists will also find it stimulating and occasionally provocative.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.