The intention of this book is to provide an impression of all aspects of p- tovoltaics (PV). It is not just about physics and technology or systems, but it looks beyond that at the entire environment in which PV is embedded. The ?rst chapter is intended as an introduction to the subject. It can also be considered an executive summary. Chapters 2–4 describe very brie?y the basic physics and technology of the solar cell. The silicon cell is the vehicle for this description because it is the best understood solar cell and also has the greatest practical importance. A reader who is not interested in the ph- ical details of the solar cell can skip Chap.2 and still understand the rest of the book. In general, it was the intention of the authors to keep the book at a level that does not require too much previous knowledge of photovoltaics. Chapter5isdevotedtoothermaterialsandnewconceptspresentlyunder- velopment or consideration. It intends to provide an impression of the many possibilities that exist for the conversion of solar radiation into electricity by solid state devices. These new concepts will keep researchers occupied for decades to come. Chapter 6 gives an introduction to cell and module techn- ogy and also informs the reader about the environmental compatibility and recycling of modules. The following chapters are devoted to practical applications. Chapters 7 and 8 introduce systems technology for di?erent applications. The envir- mental impact of PV systems and their reliability is the subject of Chap.9.
The intention of this book is to provide an impression of all aspects of p- tovoltaics (PV). It is not just about physics and technology or systems, but it looks beyond that at the entire environment in which PV is embedded. The ?rst chapter is intended as an introduction to the subject. It can also be considered an executive summary. Chapters 2–4 describe very brie?y the basic physics and technology of the solar cell. The silicon cell is the vehicle for this description because it is the best understood solar cell and also has the greatest practical importance. A reader who is not interested in the ph- ical details of the solar cell can skip Chap.2 and still understand the rest of the book. In general, it was the intention of the authors to keep the book at a level that does not require too much previous knowledge of photovoltaics. Chapter5isdevotedtoothermaterialsandnewconceptspresentlyunder- velopment or consideration. It intends to provide an impression of the many possibilities that exist for the conversion of solar radiation into electricity by solid state devices. These new concepts will keep researchers occupied for decades to come. Chapter 6 gives an introduction to cell and module techn- ogy and also informs the reader about the environmental compatibility and recycling of modules. The following chapters are devoted to practical applications. Chapters 7 and 8 introduce systems technology for di?erent applications. The envir- mental impact of PV systems and their reliability is the subject of Chap.9.
A bird's-eye view of the developmental trends and problems of recent photovoltaics is presented. The worldwide effort to develop high-efficiency low-cost PV modules, making use of most efficient solar cells and clever low-cost solar concentrators is described.
As environmental concerns escalate, solar power is increasingly seen as an attractive alternative energy source. Crystalline Silicon Solar Cells addresses the practical and theoretical issues fundamental to the viable conversion of sunlight into electricity. Written by three internationally renowned experts, this valuable reference profits from results and experience gained from research at the Fraunhofer Institute for Solar Energy Systems. Features include: Introduction to the principles of photovoltaics, providing a grounding in semiconductor physics for the novice reader Special emphasis on the methods of attaining high efficiency and thereby cost-effective solar power Examination of the physics, design and technology of crystalline silicon solar cells, in particular thin film cells Survey of a selection of alternative cell types equipping the reader with a complete overview Detailed description of measuring and analysis techniques to facilitate determining physical semiconductor and solar cell parameters Accessible to those with a basic knowledge of physics and mathematics, this is an excellent introductory book for students studying solid state and semiconductor physics. All those working in photovoltaic development and production will find Crystalline Silicon Solar Cells an indispensable resource.
This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.